Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors (original) (raw)

Review Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors

2013

Excellent electrical performance and extreme sensitivity to chemical species in semiconducting Single-Walled Carbon NanoTubes (s-SWCNTs) motivated the study of using them to replace silicon as a next generation field effect transistor (FET) for electronic, optoelectronic, and biological applications. In addition, use of SWCNTs in the recently studied flexible electronics appears more promising because of SWCNTs' inherent flexibility and superior electrical performance over silicon-based materials. All these applications require SWCNT-FETs to have a wafer-scale uniform and reliable performance over time to a level that is at least comparable with the currently used silicon-based nanoscale FETs. Due to similarity in device configuration and its operation, SWCNT-FET inherits most of the variability and reliability concerns of silicon-based FETs, namely the ones originating from line edge roughness, metal work-function variation, oxide defects, etc. Additional challenges arise from the lack of chirality control in as-grown and post-processed SWCNTs and also from the presence of unstable hydroxyl (-OH) groups near the interface of SWCNT and dielectric. In this review article, we discuss these variability and reliability origins in SWCNT-FETs. Proposed solutions for mitigating each of these sources are presented and a future perspective is provided in general, which are required for commercial use of SWCNT-FETs in future nanoelectronic applications.

Advances and Frontiers in Single-Walled Carbon Nanotube Electronics

Single-walled carbon nanotubes (SWCNTs) have been considered as one of the most promising electronic materials for the next-generation electronics in the more Moore era. Sub-10 nm SWCNT-field effect transistors (FETs) have been realized with several performances exceeding those of Si-based FETs at the same feature size. Several industrial initiatives have attempted to implement SWCNT electronics in integrated circuit (IC) chips. Here, the recent advances in SWCNT electronics are reviewed from in-depth understanding of the fundamental electronic structures, the carrier transport mechanisms, and the metal/SWCNT contact properties. In particular, the subthreshold switching properties are highlighted for low-power, energy-efficient device operations. State-of-the-art low-power SWCNT-based electronics and the key strategies to realize low-voltage and low-power operations are outlined. Finally, the essential challenges and prospects from the material preparation, device fabrication, and large-scale ICs integration for future SWCNT-based electronics are foregrounded.

Physics of carbon nanotube electronic devices

Reports on Progress in Physics, 2006

Carbon nanotubes (CNTs) are amongst the most explored one-dimensional nanostructures and have attracted tremendous interest from fundamental science and technological perspectives. Albeit topologically simple, they exhibit a rich variety of intriguing electronic properties, such as metallic and semiconducting behaviour. Furthermore, these structures are atomically precise, meaning that each carbon atom is still three-fold coordinated without any dangling bonds. CNTs have been used in many laboratories to build prototype nanodevices. These devices include metallic wires, field-effect transistors, electromechanical sensors and displays. They potentially form the basis of future all-carbon electronics. This review deals with the building blocks of understanding the device physics of CNT-based nanodevices. There are many features that make CNTs different from traditional materials, including chirality-dependent electronic properties, the one-dimensional nature of electrostatic screening and the presence of several direct bandgaps. Understanding these novel properties and their impact on devices is crucial in the development and evolution of CNT applications.

Single- and multi-wall carbon nanotube field-effect transistors

Applied Physics Letters, 1998

We fabricated field-effect transistors based on individual single-and multi-wall carbon nanotubes and analyzed their performance. Transport through the nanotubes is dominated by holes and, at room temperature, it appears to be diffusive rather than ballistic. By varying the gate voltage, we successfully modulated the conductance of a single-wall device by more than 5 orders of magnitude. Multi-wall nanotubes show typically no gate effect, but structural deformations-in our case a collapsed tube-can make them operate as field-effect transistors. © 1998 American Institute of Physics. ͓S0003-6951͑98͒00143-0͔

Single-walled carbon nanotube electronics

IEEE Transactions on Nanotechnology, 2002

Single-walled carbon nanotubes (SWNTs) have emerged as a very promising new class of electronic materials. The fabrication and electronic properties of devices based on individual SWNTs are reviewed. Both metallic and semiconducting SWNTs are found to possess electrical characteristics that compare favorably to the best electronic materials available. Manufacturability issues, however, remain a major challenge

Impact of SWCNT Band Gaps on the Performance of a Ballistic Carbon Nanotube Field Effect Transistors (CNTFETs)

Journal of Nano- and Electronic Physics, 2017

Band gap is an important property in designing single-walled carbon nanotube (SWCNT) for nanoelectronic devices. This paper describes the impact of SWCNT band gaps on the performance of a ballistic carbon nanotube field effect transistor (CNTFET) using the 2D numerical simulator. The results demonstrate that with the reduction in SWCNT band gap the performance parameters such as transconductance, output conductance, Ion/Ioff current ratio, gain, and carrier injection velocity enhanced while the short channel effects subthreshold slope and drain-induced barrier lowering get suppressed. The enhanced device performance and reduced short channel effects of CNTFET with the reduction in SWCNT band gaps signifying that the CNTFET is a suitable nanoelectronic device for amplification purposes, low power analog and digital circuits, high-speed and low power applications.