Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean (original) (raw)

Long-range transport of airborne microbes over the global tropical and subtropical ocean

Nature communications, 2017

The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 10(21) and 2.1 × 10(21) cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transocean...

Global biogeography of atmospheric microorganisms reflects diverse recruitment and environmental filtering

Atmospheric transport is critical to dispersal of microorganisms between habitats, and this underpins resilience in terrestrial and marine ecosystems globally. A key unresolved question is whether microorganisms assemble to form a taxonomically distinct, geographically variable, and functionally adapted atmospheric microbiota. This question is made more complex by the unique challenges of separating potential contaminants from atmospheric signal, particularly given the ultra-low biomass of air and the long durations of sampling where contamination may occur. Here we adopted a comprehensive data filtering approach to mitigate contamination and characterise inter-continental patterns of microbial taxonomic and functional diversity in air within and above the atmospheric boundary layer and in underlying soils for 596 globally sourced samples. Bacterial and fungal assemblages in air were taxonomically structured and deviated significantly from purely stochastic assembly. Patterns differ...

Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

Biogeosciences, 2011

For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of microorganisms in the atmosphere. Microorganisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these microorganisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that airborne microorganisms might play in meteorological phenomena. For the upcoming era of research on the role of airborne microorganisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of microorganisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach

Scientific Reports

Surface ocean bubble-bursting generates aerosols composed of microscopic saltwater droplets, enriched in marine organic matter. The organic fraction profoundly influences aerosols' properties, by scattering solar radiations and nucleating water particles. Still little is known on the biochemical and microbiological composition of these organic particles. In the present study, we experimentally simulated the bursting of bubbles at the seawater surface of the NorthEastern Atlantic Ocean, analysing the organic materials and the diversity of the bacteria in the source-seawaters and in the produced aerosols. We show that, compared with seawater, the sub-micron aerosol particles were highly enriched in organic matter (up to 140,000x for lipids, 120,000x for proteins and 100,000x for carbohydrates). Also DNA, viruses and prokaryotes were significantly enriched (up to 30,000, 250 and 45x, respectively). The relative importance of the organic components in the aerosol did not reflect those in the seawater, suggesting their selective transfer. Molecular analyses indicate the presence of selective transfers also for bacterial genotypes, highlighting higher contribution of less abundant seawater bacterial taxa to the marine aerosol. Overall, our results open new perspectives in the study of microbial dispersal through marine aerosol and provide new insights for a better understanding of climate-regulating processes of global relevance. Marine aerosol is of primary importance for atmospheric processes from local to global scale. It influences the radiation balance of the earth, scattering and absorbing solar radiations either directly or by cloud-condensation nuclei (CCN) and ice-nucleating particles (INPs) formation 1-3. Consequently, changes in marine aerosol abundance and/or composition can significantly influence the global climate 4-7. Marine aerosol is composed of diverse inorganic species, but very complex mixtures of organic compounds also contribute to its overall mass 5, 6. The quantification and characterisation of these organic materials in marine aerosol is at present a largely unexplored issue and a technical challenge, with available information still very scant 8-11. Recent evidences suggest that marine primary aerosols produced by wind-induced bubble bursting in the ocean 12 can be highly enriched in organic matter 5, 11, 13-15 and microorganisms 16-19 , including prokaryotes and viruses 20-22. Microbes in the surface oceans are intermediary sources or sinks for inorganic and organic compounds. Surface marine waters typically display higher microbial abundances and concentrations of dissolved and particulate organic matter than in sub-surface waters (up to 3-orders of magnitude) 11, 20, 23. This material is cycled/ transferred through the food web, and microbes can significantly influence the exchange of organic compounds across the air/water interface and hence the production and composition of marine aerosols 3, 20, 24-27. However,

Relative viability proxy of airborne prokaryotic microorganisms at the Southeastern Mediterranean coastal Sea

Frontiers in Environmental Science, 2022

The atmosphere plays a fundamental role in transporting airborne prokaryotes across the oceans and land. Despite the harsh atmospheric conditions, a considerable fraction of the airborne prokaryotic microorganisms survive the journey and remain viable upon deposition, and can affect the receiving environment. Here, we provide the first estimate of potential viability proxy for airborne prokaryotic cells at the Southeastern Mediterranean coast in 22 events during 2015, representing marine and terrestrial air-mass trajectories and a significant dust storm event. This was assessed using sequence amplicons of the small subunit ribosomal RNA gene (SSU rRNA) jointly with other complementary measurements. To estimate the relative viability in our dataset we used the ratio between the abundance of the bacterial SSU rRNA transcripts in a given sampling date and the lowest measured value (23.7.2015) as a measure of a relative viability proxy. The abundance of prokaryotes SSU rRNA transcripts ranged from~500 to 11,000 copies m 3 , with~2-fold higher relative viability proxy in marine-origin aerosols than predominantly terrestrial atmospheric trajectories. The relative viability proxy of prokaryotes was low during the peak of an intense and prolonged dust storm, and increased by~1.5-fold in the subsequent days representing background conditions (<1700 ng Al m −3). Furthermore, we show that anthropogenic/toxic trace-metals (Cu/Al, Pb/Al) negatively correlates with potentially viable airborne prokaryotes in marine trajectory aerosols, whereas mineral dust load (Al, Fe proxy) positively affect their potential viability proxy. This may suggest that airborne prokaryotes associated to marine trajectories benefit from a particle-associate lifestyle, enabling relatively higher humidity and supply of nutrients attributed to mineral dust particles.

Aerosol Microbiome over the Mediterranean Sea Diversity and Abundance

Atmosphere, 2019

Prokaryotic microbes can become aerosolized and deposited into new environments located thousands of kilometers away from their place of origin. The Mediterranean Sea is an oligotrophic to ultra-oligotrophic marginal sea, which neighbors northern Africa (a major source of natural aerosols) and Europe (a source of mostly anthropogenic aerosols). Previous studies demonstrated that airborne bacteria deposited during dust events over the Mediterranean Sea may significantly alter the ecology and function of the surface seawater layer, yet little is known about their abundance and diversity during 'background' non-storm conditions. Here, we describe the abundance and genetic diversity of airborne bacteria in 16 air samples collected over an East-West transect of the entire Mediterranean Sea during non-storm conditions in April 2011. The results show that airborne bacteria represent diverse groups with the most abundant bacteria from the Firmicutes (Bacilli and Clostridia) and Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) phyla. Most of the bacteria in our samples have previously been observed in the air at other open ocean locations, in the air over the Mediterranean Sea during dust storms, and in the Mediterranean seawater. Airborne bacterial abundance ranged from 0.7 × 10 4 to 2.5 × 10 4 cells m −3 air, similar to abundances at other oceanic regimes. Our results demonstrate that airborne bacterial diversity is positively correlated with the mineral dust content in the aerosols and was spatially separated between major basins of the Mediterranean Sea. To our knowledge, this is the first comprehensive biogeographical dataset to assess the diversity and abundance of airborne microbes over the Mediterranean Sea. Our results shed light on the spatiotemporal distribution of airborne microbes and may have implications for dispersal and distribution of microbes (biogeography) in the ocean.

Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology

Biogeosciences Discussions, 2008

For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of microorganisms in the atmosphere. Microorganisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these microorganisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that airborne microorganisms might play in meteorological phenomena. For the upcoming era of research on the role of airborne microorganisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of microorganisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

The Relationship between Air-Mass Trajectories and the Abundance of Dust-Borne Prokaryotes at the SE Mediterranean Sea

Atmosphere

Airborne prokaryotes are transported along with dust/aerosols, yet very little attention is given to their temporal variability above the oceans and the factors that govern their abundance. We analyzed the abundance of autotrophic (cyanobacteria) and heterotopic airborne microbes in 34 sampling events between 2015–2018 at a coastal site in the SE Mediterranean Sea. We show that airborne autotrophic (0.2–7.6 cells × 103 m−3) and heterotrophic (0.2–30.6 cells × 103 m−3) abundances were affected by the origin and air mass trajectory, and the concentration of dust/aerosols in the air, while seasonality was not coherent. The averaged ratio between heterotrophic and autotrophic prokaryotes in marine-dominated trajectories was ~1.7 ± 0.6, significantly lower than for terrestrial routes (6.8 ± 6.1). Airborne prokaryotic abundances were linearly and positively correlated to the concentrations of total aerosol, while negatively correlated with the aerosol’s anthropogenic fraction (using Pb/Al...

A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations

Proceedings of the National Academy of Sciences

Airborne microbes (bacteria, archaea, protists, and fungi) were surveyed over a 7-y period via high-throughput massive sequencing of 16S and 18S rRNA genes in rain and snow samples collected fortnightly at a high-elevation mountain Long-Term Ecological Research (LTER) Network site (LTER-Aigüestortes, Central Pyrenees, Spain). This survey constitutes the most comprehensive mountain-top aerobiology study reported to date. The air mass origins were tracked through modeled back-trajectories and analysis of rain water chemical composition. Consistent microbial seasonal patterns were observed with highly divergent summer and winter communities recurrent in time. Indicative microbial taxa were unveiled as a forensic signature, and ubiquitous taxa were observed as common atmosphere inhabitants, highlighting aerosols as a potentially successful mechanism for global microbial dispersal. Source-tracking analyses identified freshwater, cropland, and urban biomes as the most important sources fo...

Spatial distribution of marine airborne bacterial communities

MicrobiologyOpen, 2015

The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters - temperature as a function of wind direction and the sampling location itself. ...