Effect of L- and D-REKR amino acid-containing peptides on HIV and SIV envelope glycoprotein precursor maturation and viral replication (original) (raw)

Abstract

sparkles

AI

This research investigates the effects of L- and D-REKR amino acid-containing peptides on the maturation of HIV and SIV envelope glycoprotein precursors and their impact on viral replication. The study demonstrates that specific peptides, particularly dec14D, significantly inhibit the maturation process of precursor glycoproteins, affecting viral replication while showing no cytotoxic effects on target cells. The findings underscore the potential of these peptides in developing new therapeutic strategies targeting viral envelope maturation.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (45)

  1. Moulard, M. and Decroly, E. (2000) Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta 1469, 121-132
  2. Doms, R. W. and Moore, J. P. (2000) HIV-1 membrane fusion : targets of opportunity. J. Cell. Biol. 151, 9-14
  3. Chan, D. C. and Kim, P. S. (1998) HIV entry and its inhibition. Cell (Cambridge, Mass.) 93, 681-684
  4. Kilby, J. M., Hopkins, S., Venetta, T. M., DiMassimo, B., Cloud, G. A., Lee, J. Y., Alldredge, L., Hunter, E., Lambert, D., Bolognesi, D. et al. (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med. 4, 1302-1307 # 2002 Biochemical Society
  5. Eckert, D. M. and Kim, P. S. (2001) Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777-810
  6. Root, M. J., Kay, M. S. and Kim, P. S. (2001) Protein design of an HIV-1 entry inhibitor. Science 291, 884-888
  7. Callebaut, C., Jacotot, E., Krust, B., Guichard, G., Blanco, J., Valenzuela, A., Svab, J., Muller, S., Briand, J. P. and Hovanessian, A. G. (1997) Pseudopeptide TASP inhibitors of HIV entry bind specifically to a 95-kDa cell surface protein. J. Biol. Chem. 272, 7159-7166
  8. Bosch, V. and Pawlita, M. (1990) Mutational analysis of the human immunodeficiency virus type 1 Env gene product proteolytic cleavage site. J. Virol. 64, 2337-2344
  9. McCune, J. M., Rabin, L. B., Feinberg, M. B., Leiberman, M., Mosek, J. C., Reyes, G. R. and Weisman, L. L. (1989) Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell (Cambridge, Mass.) 53, 55-67
  10. Seidah, N. G., Day, R., Marcinkiewicz, M. and Chretien, M. (1998) Precursor convertases : an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann. N.Y. Acad. Sci. 839, 9-24
  11. Decroly, E., Benjannet, S., Savaria, D. and Seidah, N. G. (1997) Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160. FEBS Lett. 405, 68-72
  12. Hallenberger, S., Moulard, M., Sordel, M., Klenk, H.-D. and Garten, W. (1997) The role of eukaryotic subtilisin-like endoprotease for the activation of human immunodeficiency virus glycoproteins in natural host cells. J. Virol. 71, 1036-1045
  13. Kido, H., Kamoshita, K., Fukutomi, A. and Katunuma, N. (1993) Processing protease for gp160 human immunodeficiency virus type 1 envelope glycoprotein precursor in human T4j lymphocytes. J. Biol. Chem. 68, 13406-13413
  14. Bendjennat, M., Bahbouhi, B. and Bahraoui, E. (2001) Purification and characterization of a Ca 2 + -independent endoprotease activity from peripheral blood lymphocytes : involvment in HIV-1 gp160 maturation. Biochemistry 40, 4800-4810
  15. Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H.-D. and Garten, W. (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature (London) 360, 358-361
  16. Bahbouhi, B., Bendjennat, M., Shiva, C., Kogan, M., Albericio, F., Giralt, E., Seidah, N. G. and Bahraoui, E. (2001) Inhibition of HIV-2 ROD replication in a lymphoblastoid cell line by the α1-antitrypsin Portland variant (α1-PDX) and the decRVKRcmk peptide : comparison to HIV-1 LAI. Microbes Infect. 3, 1073-1084
  17. Anderson, E. D., Thomas, L., Hayflick, J. S. and Thomas, G. (1993) Inhibition of HIV- 1 gp160-dependent membrane fusion by a furin directed α1-antitrypsin variant. J. Biol. Chem. 268, 24887-24891
  18. Bahbouhi, B., Bendjennat, M., Guetard, D., Seidah, N. G. and Bahraoui, E. (2000) Effect of α1 antitrypsin Portland variant (α1-PDX) on HIV-1 replication. Biochem. J. 352, 91-98
  19. Albericio, F., Kneib-Cordonier, N., Biancalana, S., Gera, L., Masada, R. I., Hudson, D. and Baranay, G. (1990) Preparation and application of the 5-(4-(9- fluoroenylmethyloxycarbonyl)aminoethyl-3,5dimethoxyphenoxy)-valeric acid (PAL) handle for the solid phase synthesis of C-terminal peptide amides under mild conditions. J. Org. Chem. 55, 3730-3743
  20. Lloyd-Williams, P., Albericio, F. and Giralt, E. (1997) Chemical Approaches to the Synthesis of Peptides and Proteins, CRC Press, Boca Raton, FL
  21. Pearson, D. A., Blanchette, M., Baker, M. L. and Guindon, C. A. (1989) Trialkylsilanes as scavengers for the trifluoroacetic acid deblocking of protecting groups in peptide synthesis. Tetrahedron Lett. 30, 2739-2742
  22. Ko$ nig, W. and Geiger, R. (1970) Racemisierung bei Peptidsynthesen. Chem. Ber. 103, 2024-2033
  23. Ko$ nig, W. and Geiger, R. (1970) Eine Neue Methode zur Synthese von Peptiden. Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid und 3-hydroxy-4-oxo-3,4- dihydro-1,2,3-benzotriazin. Chem. Ber. 103, 2034-2040
  24. Flo$ sheimer, A. and Riniker, B. (1991) Solid-phase synthesis of peptides with highly acid-sensitive HMPB linker. In Peptides. Proceedings of the 21st European Peptide Symposium (Giralt, E. and Andreu, D., eds.), pp. 131-133, ESCOM Science Publishers, The Netherlands
  25. Angliker, H., Wikstrom, P., Shaw, E., Brenner, C. and Fuller, R. S. (1993) The synthesis of inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast. Biochem. J. 93, 75-81
  26. Received 8 January 2002/23 May 2002 ; accepted 18 June 2002 Published as BJ Immediate Publication 18 June 2002, DOI 10.1042/BJ20020052
  27. Vives, E., Charneau, P., van Rietschoten, J., Rochat, H. and Bahraoui, E. (1994) Effects of the Tat basic domain on human immunodeficiency virus type 1 transactivation, using chemically synthesized Tat protein and Tat peptides. J. Virol. 68, 3343-3353
  28. Johnson, V. A. and Byington, R. E. (1993) Quantitative assays for virus infectivity. In Techniques in HIV Research (Aldovini, A. and Walker, B. D., eds.), pp. 71-76, Stockton Press, New York
  29. Decroly, E., Vandenbranden, M., Ruysschaert, J. M., Cogniaux, J., Jacob, G. S., Howard, S. C., Marshal, G., Kompelli, A., Basak, A., Jean, F. et al. (1994) The convertases furin and PC1 can both cleave the human immunodeficiency virus HIV-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-1 TM). J. Biol. Chem. 269, 12240-12247
  30. Decroly, E., Wouters, S., Di Bello, C., Lazure, C., Ruysshaert, J.-M. and Seidah, N. G. (1996) Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and statement in CD4j cell lines. J. Biol. Chem. 271, 30442-30450
  31. Benjannet, S., Savaria, D., Laslop, A., Munzer, J. S., Chretien, M., Marcikiewics, M. and Seidah, N. G. (1997) α1-antitrypsin Portland inhibits processing of precursors mediated by proprotein convertases primarily within the constitutive secretory pathway. J. Biol. Chem. 272, 26210-26215
  32. Benjouad, A., Gluckman, J. C., Rochat, H., Montagnier, L. and Bahraoui, E. (1992) Influence of carbohydrate moieties on the immunogenicity of the human immunodeficiency virus type 1 recombinant gp160. J. Virol. 66, 2473-2483
  33. Charneau, P., Alizon, M. and Clavel, F. (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol. 66, 2814-2820
  34. Babas, T., Le Grand, R., Dormont, D. and Bahraoui, E. (1997) Production and characterization of monoclonal antibodies to simian immunodeficiency virus envelope glycoproteins. AIDS Res. Hum. Retroviruses 13, 1109-1119
  35. Vollenweider, F., Benjannet, S., Decroly, E., Savaria, D., Lazure, C., Thomas, G., Chretien, M. and Seidah, N. G. (1996) Comparative cellular processing of the human immunodeficiency virus (HIV) envelope glycoprotein by the mammalian subtilisin/kexin-like convertases. Biochem. J. 314, 521-532
  36. Garten, W., Stieneke, A., Shaw, E., Wikstrom, P. and Klenk, H.-D. (1989) Inhibition of proteolytic activation of Influenza virus hemmaglutinin by specific peptidyl chloroalkylketones. Virology 172, 25-31
  37. Watanabe, M., Hirano, A., Stenglein, S., Nelson, J., Thomas, G. and Wrong, T. C. (1995) Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J. Virol. 69, 3206-3210
  38. Volchkov, V. E., Feldmann, H., Volchkova, V. A. and Klenk, H.-D. (1998) Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl. Acad. Sci. U.S.A. 95, 5762-5767
  39. Zarsik, S., Decroly, E., Wattiez, R., Seidah, N. G., Burny, A. and Ruysschaert, J.-M. (1997) Comparative processing of bovine leukemia virus envelope glycoprotein gp72 by subtilisin/kexin-like mammalian convertases. FEBS Lett. 406, 205-210
  40. Right, J. A., Fu$ rbringer, T., Koch, A., Pfeuffer, I., Herden, C., Bause-Niedrig, I. and Garten, W. (1998) Processing of the Borna disease virus glycoprotein gp94 by the subtilisin-like endoprotease furin. J. Virol. 72, 4528-4533
  41. Dubay, J. W., Dubay, S. R., Shin, H. J. and Hunter, E. (1995) Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein : requirement of precursor cleavage for glycoprotein incorporation. J. Virol. 69, 4675-4682
  42. Rholam, M., Nicolas, P. and Cohen, P. (1986) Precursors for peptide hormones share common secondary structures forming features at the proteolytic processing sites. FEBS Lett. 207, 1-6
  43. Brakch, N., Bousetta, H., Rholam, M. and Cohen, P. (1993) Role of β-turn in proteolytic processing of peptide hormone precursors at dibasic sites. Biochemistry 32, 4925-4930
  44. Paollilo, L., Simonetti, M., Brakch, N., D 'Auria, G., Saviano, M., Dettin, M., Rholam, M., Scatturin, A., Dibello, C. and Cohen, P. (1992) Evidence for the presence of secondary structure at the dibasic processing site of prohormone : the pro-ocytocyn model. EMBO J. 11, 2399-2405
  45. Bek, E. and Berry, R. (1990) Prohormone cleavage sites are associated with α-loops. Biochemistry 29, 178-183