Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex (original) (raw)
Related papers
Journal of Functional Foods, 2015
Omega-3 fatty acids and probiotic bacteria were co-encapsulated in a single whey protein isolate (WPI)-gum Arabic (GA) complex coacervate microcapsule. Tuna oil (O) and Lactobacillus casei 431 (P) were used as models of omega-3 and probiotic bacteria, respectively. The co-microcapsules (WPI-P-O-GA) and L. casei containing microcapsules (WPI-P-GA) were converted into powder by using spray and freeze drying. The viability of L. casei was significantly higher in WPI-P-O-GA co-microcapsules than in WPI-P-GA. The oxidative stability of tuna oil was significantly higher in spray dried co-capsules than in freeze dried ones.
Food chemistry, 2017
Solid co-microcapsules of omega-3 rich tuna oil and probiotic bacteria L. casei were produced using whey protein isolate-gum Arabic complex coacervate as wall material. The in-vitro digestibility of the co-microcapsules and microcapsules was studied in terms of survival of L. casei and release of oil in sequential exposure to simulated salivary, gastric and intestinal fluids. Co-microencapsulation significantly increased the survival and surface hydrophobicity and the ability of L. casei to adhere to the intestinal wall. No significant difference in the assimilative reduction of cholesterol was observed between the microencapsulated and co-microencapsulated L. casei. The pattern of release of oil from the microcapsules and co-microcapsules was similar. However, the content of total chemically intact omega-3 fatty acids was higher in the oil released from co-microcapsules than the oil released from microcapsules. The co-microencapsulation can deliver bacterial cells and omega-3 oil t...
Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)–gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI–GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.
Drying Technology, 2016
The objective of the study was to determine optimum inlet and outlet air temperatures of spray process for producing co-microcapsules containing omega-3 rich tuna oil and probiotic bacteria L. casei. These co-microcapsules were produced using whey protein isolate and gum Arabic complex coacervates as shell materials. Improved bacterial viability and oxidative stability of omega-3 oil were used as two main criteria of this study. Three sets of inlet (130 o C, 150 o C and 170 o C) and outlet (55 o C, 65 o C and 75 o C) air temperatures were used in nine combinations to produce powdered co-microcapsule. The viability of L. casei, oxidative stability of omega-3 oil, surface oil, oil microencapsulation efficiency, moisture content, surface elemental composition and morphology of the powdered samples were measured. There is no statistical difference in oxidative stability at two lower inlet air temperatures (130 o C and 150 o C). However, there was a significant decrease in oxidative stability when higher inlet temperature (170 o C) was used. The viability of L. casei decreased with the increase in the inlet and outlet
A physicochemical approach has been undertaken to develop polymeric microcapsules for delivering probiotic bacteria with improved viability in functional food products. Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3 %w/v) and gum arabic (GA, 3 %w/v) solutions mixed at 2:1 weight ratio. The viability of the bacterial cells during processing (heat treatment and high salt concentrations), under simulated gut conditions (low pH and high bile concentrations) and upon storage, was evaluated. Entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73 %; log scale), especially in comparison with nonencapsulated (free) cells (<19 %). Moreover, after 60 days of refrigerated storage at pH 4.0, the viability of microencapsulated cells was more than 86 %, implying improved protection in comparison with the free cells (<59 %). Complex coacervation with WPI/GA has the potential to deliver live probiotics in low pH foods or fermented products; it is also important to note that the complexes can dissolve at pH 7.0 (gut environment) releasing the microbial cells (desired feature of target delivery systems).
Encapsulation of probiotic bacteria is generally used to enhance the viability during processing, and also for the target delivery in gastrointestinal tract. Probiotics are used with the fermented dairy products, pharmaceutical products, and health supplements. They play a great role in maintaining human health. The survival of these bacteria in the human gastrointestinal system is questionable. In order to protect the viability of the probiotic bacteria, several types of biopolymers such as alginate, chitosan, gelatin, whey protein isolate, cellulose derivatives are used for encapsulation and several methods of encapsulation such as spray drying, extrusion, emulsion have been reported. This review focuses on the method of encapsulation and the use of different biopolymeric system for encapsulation of probiotics.
Journal of Dairy Science, 2022
Probiotics have received increased attention due to their nutritional and health-promoting benefits. However, their viability is often impeded during food processing as well as during their gastrointestinal transit before reaching the colon. In this study, probiotic strains Lactobacillus rhamnosus MF00960, Pediococcus pentosaceus MF000967, and Lactobacillus paracasei DSM20258 were encapsulated within sodium alginate, camel casein (CC), camel skin gelatin (CSG) and CC: CSG (1:1 wt/wt) wall materials. All 3 strains in encapsulated form showed an enhanced survival rate upon simulated gastrointestinal digestion compared with free cells. Among the encapsulating matrices, probiotics embedded in CC showed higher viability and is attributed to less porous structure of CC that provided more protection to entrapped probiotics cells. Similarly, thermal tolerance at 50°C and 70°C of all 3 probiotic strains were significantly higher upon encapsulation in CC and CC: CSG. Scanning electron microscope micrographs showed probiotic strains embedded in the dense protein matrix of CC and CSG. Fourier-transform infrared spectroscopy showed that CC-and CSG-encapsulated probiotic strains exhibited the amide bands with varying intensity with no significant change in the structural conformation. Probiotic strains encapsulated in CC and CC: CSG showed higher retention of inhibitory properties against α-glucosidase, α-amylase, dipeptidyl peptidase-IV, pancreatic lipase, and cholesteryl esterase compared with free cells upon exposure to simulated gastrointestinal digestion conditions. Therefore, CC alone or in combination with CSG as wall materials provided effective protection to cells, retained their bioactive properties, which was comparable to sodium alginate as wall materials. Thus, CC and CC: CSG can be an efficient wall material for encapsulation of probiotics for food applications.
Probiotication of foods: A focus on microencapsulation tool
Trends in Food Science and Technology, 2016
Background With almost thirty years of application in field of probiotics, microencapsulation is becoming an important technology for sustaining cell viability during food production, storage and consumption as well as for the development of new probiotic food carriers. Potentiality of microcapsules in protecting probiotics along human digestive tract seems to be well established. Instead, the inclusion of probiotics into foods, also in microencapsulated form, poses still many challenges for the retention of their viability, being food intrinsic and extrinsic factors crucial for this item. Scope and Approach We collect the relevant literature concerning the use of microencapsulation for the inclusion of probiotics in traditional food vehicles such as milk derivatives and in novel food carriers that were grouped in bakery, meat, fruit and vegetable. Furthermore we intent to highlight within different food categories the main factors that act in challenging probiotics viability and functionality. What we aim is to establish how microencapsulation is effectively promising in the research and development of innovative probiotic foods.