Magnetic Resonance Imaging of Gliomas (original) (raw)
2011, Advances in the Biology, Imaging and Therapies for Glioblastoma
Brain cancer is a life threatening neurological disorder in which malignant cells, grow, proliferate and invade the original cerebral structures of the host, hampering seriously adequate brain function. Malignant cells generate eventually a dedifferentiated tumoral mass that interferes with vital brain functions as sensory and motor activations, memory and perception and neuroendocrine regulation, among others. The fully developed tumoral mass consumes a significant part of cerebral volume resulting in cerebral compression and serious neurological impairments, such as vision or hearing disturbances and eventually lethal cerebrovascular complications. Most brain tumors remain asymptomatic during early development, revealing their symptoms and lethal nature only at later stages. Therapy is facilitated many times by an early finding, a circumstance making the neuroimaging approaches particularly useful in the detection and handling of these lesions. In the last decades, Magnetic Resonance Imaging (MRI) approaches have evolved into the most powerful and versatile imaging tool for brain tumor diagnosis, prognosis, therapy evaluation, monitoring of disease progression and planning of neurosurgical strategies. MRI methods enable the non invasive assessment of glioma morphology and functionality providing a point of likeness into histopathological grading of the tumor and helping in this way a more successful patient management. This impressive evolution is based not only for the high resolution and quality of the anatomical images obtained, but on the additional possibilities to achieve quantitative functional information on tumoral physiopathology and its repercussions in the sensorial, motor and integrative functions through the brain. The use of conventional paramagnetic or superparamagnetic contrast media allows for the identification of areas with blood-brain barrier (BBB) disruption and the recent molecular imaging approaches enable researchers to visualize molecular events associated to tumor proliferation and invasion, bringing the potentials of diagnostic imaging to the cellular and molecular aspects of tumor biology. Moreover, functional MRI approaches as performed in the clinic are endowed with the potential to detect and characterize the earliest neoangiogenic, metabolic and hemodynamic alterations induced by the neoplasm. Several advanced magnetic resonance (MR) methodologies have been proposed in the last years to assess the functional competence in healthy and pathologic brain tissue. Diffusion and perfusion MRI are probably the two main approaches that have reached a relevant clinical role