Immunohistochemical detection of GHRH and its receptor splice variant 1 in primary human breast cancers (original) (raw)
Related papers
Breast Cancer Research and Treatment, 2003
Antagonists of GHRH inhibit the growth of various human tumors, including prostate cancer, but the tumoral receptors mediating the antiproliferative effect of GHRH antagonists have not been clearly identified. Recently, we demonstrated that human cancer cell lines express splice variants (SVs) of receptors for GHRH, of which SV1 exhibits the greatest similarity to the pituitary GHRH receptors. In this study we investigated the expression of GHRH and SVs of GHRH receptor and the binding characteristics of the GHRH receptor isoform in 20 surgical specimens of organ-confined and locally advanced human prostatic adenocarcinomas. The mRNA expression of GHRH and SVs of GHRH receptor was investigated by RT-PCR. The affinity and density of receptors for GHRH were determined by ligand competition assays based on bind-ing of 125 I-labeled GHRH antagonist JV-1-42 to tumor membranes. Twelve of 20 tumors (60%) exhibited specific, high affinity binding for JV-1-42, with a mean dissociation constant (K d ) of 0.81 nmol/liter and a mean maximal binding capacity of 185.2 fmol/mg membrane protein. The mRNA of SV1 was detected in 13 of 20 (65%) prostate cancer specimens and was consistent with the presence of GHRH binding. RT-PCR analyses also revealed the expression of mRNA for GHRH in 13 of 15 (86%) prostatic carcinoma specimens examined. The presence of GHRH and its tumoral receptor SVs in prostate cancers suggests the possible existence of an autocrine mitogenic loop. The antitumor effects of GHRH antagonists in prostate cancer could be exerted in part by interference with this local GHRH system. (J Clin Endocrinol Metab 87: 4707-4714, 2002) Abbreviations: B max , Maximal binding capacity; hGHRH, human GHRH; PACAP, pituitary adenylate cyclase-activating polypeptide; SCLC, small cell lung cancer; SV, splice variant; VIP, vasoactive intestinal peptide.
Breast Cancer Research and Treatment, 2009
Triple-negative breast cancers do not express receptors for estrogen or progesterone and do not overexpress HER2. These tumors have an unfavorable prognosis and at present chemotherapy is the only treatment option. Because the antagonists of growth hormone-releasing hormone (GHRH) have been shown to inhibit growth of a variety of cancers by endocrine and paracrine/autocrine mechanisms, we evaluated the expression of GHRH receptors in human specimens of triple-negative breast cancers and the response to GHRH by in vitro models. In samples of triple-negative breast cancers we found mRNA expression for the GHRH receptor and its functional splice variant SV1 in 25 and 70% of the cases, respectively and for GHRH in 80% of the samples. Immunoreaction of SV1 was detected in the human triple-negative breast cancer cell line HCC1806 while HCC1937 was negative. The growth of HCC1806 was stimulated by GHRH(1-44)NH2 and inhibited by GHRH antagonist MZ-J-7-118. In addition, in HCC1806 MAP-kinases ERK-1/2 were activated by GHRH. Our findings suggest the existence of an autocrine loop consisting of GHRH and GHRH receptors in triple-negative breast cancers. Our in vitro studies demonstrate that targeting the GHRH receptor may be a therapeutic option which should be evaluated in studies in vivo.
GH synthesis has been documented in canine mammary tissue and mammary tumors. In the present report, the characteristics of the GH receptor (GHR) are studied in these tissues. First, using immunohistochemistry, GHR was found to be present throughout normal and tumorous mammary tissues, being localized in epithelial and myoepithelial/spindle cell components and in the activated fibroblasts of desmoplastic tumor stroma. GHR expression seemed to be down-regulated only in terminally differentiated alveoli in normal tissue. GHR immunoreactivity in particular mammary (adeno)carcinomas was heterogenous. Second, the canine GHR was characterized at the molecular level. Northern blot analysis revealed a major GHR transcript of approximately 4.2 kb. The coding sequence of the canine GHR shows extensive homology with the GHR of several species. Seminested RT-PCR (using primers annealing in exons 4-5, exon 6, and exon 9) generated, next to the primary product, four different products in mammary tissues and the canine mammary tumor cell line CMT-U335, which seemed to be alternative GHR transcripts. These alternative GHR transcripts were characterized by exon 8 skipping, exon 7 skipping, and use of alternative splice donor and acceptor sites. Especially, the transcript that is missing exon 8 may encode a GH binding protein. In most malignant mammary samples, only the primary transcript was present; and alternative transcripts could not be detected. The absence of alternative GHR transcripts in mammary carcinomas, and thus putative inhibitors of GH-induced signal transduction, may contribute to enhanced sensitivity of malignant tumors to GH.
Proceedings of The National Academy of Sciences, 2005
Various attempts to detect human pituitary growth hormonereleasing hormone receptor (pGHRH-R) in neoplastic extrapituitary tissues have thus far failed. Recently, four splice variants (SVs) of GHRH-R have been described, of which SV1 has the highest structural homology to pGHRH-R and likely plays a role in tumor growth. The aim of this study was to reinvestigate whether human tumors and normal human extrapituitary tissues express the pGHRH-R and to corroborate our previous findings on its SVs. Thus, we developed a real-time PCR method for the detection of the mRNA for the pGHRH-R, its SVs, and the GHRH peptide. Using real-time PCR, Western blotting, and radioligand-binding assays, we detected the mRNA for pGHRH-R and pGHRH-R protein in various human cancer cell lines grown in nude mice and in surgical specimens of human lung cancers. The expression of mRNA for SVs of pGHRH-R and GHRH was likewise found in xenografts of human non-Hodgkin's lymphomas, pancreatic cancer, glioblastoma, smallcell lung carcinomas, and in human nonmalignant prostate, liver, lung, kidney, and pituitary. Western blots showed that these normal and malignant human tissues contain SV1 protein and immunoreactive GHRH. Our results demonstrate that some normal human tissues and tumors express mRNA and protein for the pGHRH-R and its splice variants. These findings confirm and extend the concept that GHRH and its receptors play an important role in the pathophysiology of human cancers.
PubMed, 1997
The role of progestins in the pathogenesis of breast cancer in women remains controversial. To advance this discussion, we report the demonstration and localization of progestin-induced biosynthesis of growth hormone (GH) in canine mammary gland tissue. Nontumorous mammary tissues and tumors, both benign and malignant, were obtained from private household dogs. Immunoreactive GH was localized in mammary epithelial cells and correlated with the presence of GH mRNA. Local synthesis of GH was also proven immunoelectron microscopically by demonstrating GH-containing secretory granules. Cellular GH production in nontumorous tissues was more extensive during the progesterone-dominated luteal phase of the ovarian cycle or during exposure to synthetic progestins than during anestrus. GH was also associated with areas of hyperplastic mammary epithelium, which may indicate that locally produced GH enhances proliferation, acting in an autocrine and/or paracrine manner. In 41 of 44 tumors, GH was present. Of 3 GH-negative tumor samples, 2 were from progestin-depleted, castrated bitches. In nonmalignant mammary tissues, GH production is stimulated by progesterone and synthetic progestins interacting with progesterone receptors. In some progesterone-receptor-negative malignant tumors, GH expression was found, indicating loss of this control. Progestin-induced GH probably participates in the cyclic development of the mammary gland but may promote mammary tumorigenesis by stimulating proliferation of susceptible, and sometimes transformed, mammary epithelial cells.
This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.
Proceedings of the National Academy of Sciences, 2004
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various human cancers by multiple mechanisms, which include direct effects on tumor cells through the splice variants (SV) of the GHRH receptor. Our findings suggest that the tumoral protein encoded by SV 1 (SV 1) is a likely functional receptor. The aim of this study was to develop a polyclonal antiserum against a polypeptide analog of segment 1-25 of the putative SV 1 receptor protein. Rabbits were immunized with [Ala-23]SV 1 (1-25)-Tyr-26-Cys-27-NH2 as a hapten, conjugated to BSA or keyhole limpet hemocyanin. The antisera thus generated were evaluated by RIA for binding to the radiolabeled hapten. The specificity and sensitivity of the antisera were studied on xenografts of RL and HT human non-Hodgkin's lymphomas. The sera raised against keyhole limpet hemocyanin-SV 1 hapten, showed binding values of 50 -75% at a 1:56,000 dilution. In Western blot analyses, the purified polyclonal antibody recognized a specific signal with a molecular mass of Ϸ40 kDa in RL and HT lymphomas. This band corresponds to the estimated molecular mass of the GHRH receptor isoform encoded by SV 1. RT-PCR and ligand binding studies also revealed the expression of SV 1 and the presence of high-affinity binding sites for GHRH on RL and HT tumors. Because the antiserum developed recognizes the tumoral GHRH receptor protein encoded by SV 1, it should be of value in various investigations.
International journal of …, 2011
Growth hormone releasing hormone (GHRH) antagonists have been developed for the treatment of various cancers. We investigated the effects of a novel GHRH antagonist, MIA-602, on nine breast cancer cell lines, differing in their expression for estrogen-, progesterone-and HER-2 receptors. We detected the presence of pituitary-type GHRH receptors (pGHRH-R) on 6 of the 9 breast cancer cell lines. The main splice variant of pGHRH-R, SV1, was found on all 9 cell lines. MTT assay showed that following treatment with MIA-602, cell viability decreased significantly in all 9 cell lines. The reduction in cell viability was greater in cells positive for both pGHRH-R and SV1, than in cells positive for only SV1, but the difference was not significant. Using Western blotting, we demonstrated that the levels of phospho-Akt, -GSK3β and -ERK1/2 decreased significantly following exposure to MIA-602 and the level of phospho-p38 increased after treatment. The reduction of the phosphorylated antiapoptotic proteins was significantly greater in cells where both pGHRH-R and SV1 were present, than where only SV1 was expressed. In conclusion, our study shows that MIA-602 is effective against a wide range of breast cancer cells in vitro, independently of their receptor positivity, suggesting the potential use of GHRH antagonists also in the treatment of triple-negative breast cancer. The effect of MIA-602 was mediated nearly as well in tumors that expressed only the SV1 receptor compared to those in which both SV1 and pGHRH-R were present, although a difference could be detected at the level of cell signaling.
Regulatory Peptides, 2002
Splice variants (SV) of receptors for growth hormone-releasing hormone (GHRH) have been found in several human cancer cell lines. GHRH antagonists inhibit growth of various human cancers, including osteosarcomas and Ewing's sarcoma, xenografted into nude mice or cultured in vitro and their antiproliferative action could be mediated, in part, through these SV of GHRH receptors. In this study, we found mRNA for the SV 1 isoform of GHRH receptors in human osteosarcoma line MNNG/HOS and SK-ES-1 Ewing's sarcoma line. We also detected mRNA for GHRH, which is apparently translated into the GHRH peptide and secreted by the cells, as shown by the presence of GHRH-like immunoreactivity in the conditioned media of cell cultures. In proliferation studies in vitro, the growth of SK-ES-1 and MNNG/ HOS cells was dose-dependently inhibited by GHRH antagonist JV-1-38 and an antiserum against human GHRH. Our study indicates the presence of an autocrine stimulatory loop based on GHRH and SV 1 of GHRH receptors in human sarcomas. The direct antiproliferative effects of GHRH antagonists on malignant bone tumors appear to be exerted through the SV 1 of GHRH receptors on tumoral cells.
Absence of Constitutively Activating Mutations in the GHRH Receptor in GH-Producing Pituitary Tumors
The Journal of Clinical Endocrinology & Metabolism, 2001
The molecular events leading to the development of GH-producing pituitary tumors remain largely unknown. We hypothesized that activating mutations of the GHRH receptor might occur in a subset of GH-producing pituitary tumors. Genomic DNA samples from 54 GH-producing pituitary tumor tissues were screened for mutations of the GHRH receptor. Eleven homozygous or heterozygous nucleotide substitutions