Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates (original) (raw)

Imaging robust microglial activation after lipopolysaccharide administration in humans with PET

Proceedings of the National Academy of Sciences of the United States of America, 2015

Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [(11)C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [(11)C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [(11)C]PBR28 scan. LPS administration significantly increased [(11)C]PB...

Microglial depletion and activation: A [11C]PBR28 PET study in nonhuman primates

EJNMMI Research

Background: The 18-kDa translocator protein (TSPO) is an important target for assessing neuroimmune function in brain with positron-emission tomography (PET) imaging. The goal of this work was to assess two [ 11 C]PBR28 imaging paradigms for measuring dynamic microglia changes in Macaca mulatta. Methods: Dynamic [ 11 C]PBR28 PET imaging data with arterial blood sampling were acquired to quantify TSPO levels as [ 11 C]PBR28 V T . Scans were acquired at three timepoints: baseline, immediately post-drug, and prolonged post-drug. Results: In one animal, a colony-stimulating factor 1 receptor kinase inhibitor, previously shown to deplete brain microglia, reduced [ 11 C]PBR28 V T in brain by 46 ± 3% from baseline, which recovered after 12 days to 7 ± 5% from baseline. In a different animal, acute lipopolysaccharide administration, shown to activate brain microglia, increased [ 11 C]PBR28 V T in brain by 39 ± 9% from baseline, which recovered after 14 days to −11 ± 3% from baseline. Conclusions: These studies provide preliminary evidence of complementary paradigms to assess microglia dynamics via in vivo TSPO imaging.

PET Evaluation of Microglial Activation in Non-neurodegenerative Brain Diseases

Current Neurology and Neuroscience Reports

Purpose of the Review Microglial cell activation is an important component of neuroinflammation, and it is generally well accepted that chronic microglial activation is indicative of accumulating tissue damage in neurodegenerative conditions, particularly in the earlier stages of disease. Until recently, there has been less focus on the role of neuroinflammation in other forms of neurological and neuropsychiatric conditions. Through this review, we hope to demonstrate the important role TSPO PET imaging has played in illuminating the pivotal role of neuroinflammation and microglial activation underpinning these conditions. Recent Findings TSPO is an 18 kDa protein found on the outer membrane of mitochondria and can act as a marker of microglial activation using nuclear imaging. Through the development of radiopharmaceuticals targeting TSPO, researchers have been able to better characterise the spatial-temporal evolution of chronic neurological conditions, ranging from the focal autoimmune reactions seen in multiple sclerosis to the Wallerian degeneration at remote parts of the brain months following acute cerebral infarction. Summary Development of novel techniques to investigate neuroinflammation within the central nervous system, for the purposes of diagnosis and therapeutics, has flourished over the past few decades. TSPO has proven itself a robust and sensitive biomarker of microglial activation and neuroimaging affords a minimally invasive technique to characterise neuroinflammatory processes in vivo.

Brain Region-dependent Heterogeneity and Dose- dependent Difference in Transient Microglia Population Increase during Lipopolysaccharide-induced Inflammation

Scientific Reports, 2018

Numerous studies have reported the importance of microglial activation in various pathological conditions, whereas little attention has been given to the point for dynamics of microglial population under infection-induced inflammation. In the present study, the single systemic stimulation of 100 μg/kg lipopolysaccharide (LPS) induced robust microglial proliferation only in the circumventricular organs (CVOs) and their neighboring brain regions. More than half of microglia similarly showed proliferative activity in the CVOs and their neighboring brain regions after 1 mg/kg LPS stimulation, while this stimulation expanded microglia-proliferating brain regions including the hypothalamus, medulla oblongata, and limbic system. Microglia proliferation resulted in a transient increase of microglial density, since their density almost returned to basal levels within 3 weeks. Divided microglia survived at the same rate as non-divided ones. Proliferating microglia frequently expressed a resident microglia marker Tmem119, indicating that increase of microglia density is due to the proliferation of resident microglia. Thus, the present study demonstrates that transient increase in microglia density depends on the brain region and dose of LPS during infection-induced inflammation and could provide a new insight on microglia functions in inflammation and pathogenesis of brain diseases. Microglia are innate immune cells in the brain that are diffusely distributed throughout the parenchyma and function in brain immune defenses. The microglial population in the adult rodent brain accounts for 5 to 12% of the total number of cells 1. In the human brain, microglia account for 0.5 to 16.6% of the total population of brain cells and show similar regional variability to that reported in rodents 2. Microglia have the ability to respond to many types of brain homeostatic disturbances under pathological brain conditions and are rapidly transformed from a ramified to amoeboid morphology, namely "activated microglia" 3-5. Ramified microglia, composed of long branching processes and a small cellular body, function as surveying cells by actively sensing the surrounding microenvironment via dynamic fine cellular processes 4. Activated amoeboid microglia are hypertrophic, typically have a less dendritic shape, and participate in many functions including phagocytosis and cytokine release 6. Microglial proliferation in the adult rodent brains is slow with increases at a rate of only a few percent per week under physiologically healthy conditions 1,7,8. In the mouse and human brain, the microglial density remains remarkably stable, but microglia turnover several times during a lifetime 9. They further have shown that microglia turnover is maintained by coupled proliferation and apoptosis of resident microglia rather than the infiltration of bone marrow-derived immune cells 9. However, microglia increase their population by both proliferation of the resident microglia and recruitment of bone marrow-derived immune cells under pathological brain conditions: traumatic and ischemic brain injuries, Alzheimer's disease, prion diseases, and multiple sclerosis 3-5,10. The mice

Regional difference in inflammatory response to LPS-injection in the brain: Role of microglia cell density

Journal of Neuroimmunology, 2011

To elucidate whether density of cells could contribute to the extent of microglial activation, we performed in vitro assays using three different densities of N13 microglia stimulated with LPS. Our results showed that induction of pro-inflammatory factors as TNF-α and iNOS was directly related to cell density, meanwhile the induction of the anti-inflammatory IL-10 was inversely related to cell density. Accordingly, in vivo assays showed that after LPS-injection, iNOS expression was more intense in substantia nigra, a brain area showing specific susceptibility to neurodegeneration after microglia activation, whereas IL-10 expression was more sustained in striatum, an area resistant to damage. These results support that microglia density is pivotal to control the balance between pro-and anti-inflammatory factors release.

TSPO PET Imaging: From Microglial Activation to Peripheral Sterile Inflammatory Diseases?

Contrast Media & Molecular Imaging, 2017

Peripheral sterile inflammatory diseases (PSIDs) are a heterogeneous group of disorders that gathers several chronic insults involving the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system and wherein inflammation is the cornerstone of the pathophysiology. In PSID, timely characterization and localization of inflammatoryfociare crucial for an adequate care for patients. In brain diseases,in vivopositron emission tomography (PET) exploration of inflammation has matured over the last 20 years, through the development of radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO) as molecular biomarkers of activated microglia. Recently, TSPO has been introduced as a possible molecular target for PSIDs PET imaging, making this protein a potential biomarker to address disease heterogeneity, to assist in patient stratification, and to contribute to predicting treatment response. In this review, we summarized the major research advances recently made in the...

Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state

Theranostics, 2018

Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers. Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues. Results: Here we provide evidence that P2RY12 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-11 labeled tracer targeting P2RY12, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient. Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.

[18F]FEPPA PET imaging for monitoring CD68-positive microglia/macrophage neuroinflammation in nonhuman primates

EJNMMI research, 2020

The aim of this study was to examine whether the translocator protein 18-kDa (TSPO) PET ligand [ 18 F]FEPPA has the sensitivity for detecting changes in CD68-positive microglial/macrophage activation in hemiparkinsonian rhesus macaques treated with allogeneic grafts of induced pluripotent stem cell-derived midbrain dopaminergic neurons (iPSC-mDA). Methods: In vivo positron emission tomography (PET) imaging with [ 18 F]FEPPA was used in conjunction with postmortem CD68 immunostaining to evaluate neuroinflammation in the brains of hemiparkinsonian rhesus macaques (n = 6) that received allogeneic iPSC-mDA grafts in the putamen ipsilateral to MPTP administration. Results: Based on assessment of radiotracer uptake and confirmed by visual inspection of the imaging data, nonhuman primates with allogeneic grafts showed increased [ 18 F]FEPPA binding at the graft sites relative to the contralateral putamen. From PET asymmetry analysis of the images, the mean asymmetry index of the monkeys was AI = − 0.085 ± 0.018. Evaluation and scoring of CD68 immunoreactivity by an investigator blind to the treatment identified significantly more neuroinflammation in the grafted areas of the putamen compared to the contralateral putamen (p = 0.0004). [ 18 F]FEPPA PET AI showed a positive correlation with CD68 immunoreactivity AI ratings in the monkeys (Spearman's ρ = 0.94; p = 0.005). Conclusion: These findings reveal that [ 18 F]FEPPA PET is an effective marker for detecting increased CD68-positive microglial/macrophage activation and demonstrates sufficient sensitivity to detect changes in neuroinflammation in vivo following allogeneic cell engraftment.

The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions

Journal of Neuroimmunology, 2006

Overall, the inflammatory potential of lipopolysaccharide (LPS) in vitro and in vivo was investigated using different omics technologies. We investigated the hippocampal response to intracerebroventricular (i.c.v) LPS in vivo, at both the transcriptional and protein level. Here, a time course analysis of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) showed a sharp peak at 4 h and a return to baseline at 16 h. The expression of inflammatory mediators was not temporally correlated with expression of the microglia marker F4/80, which did not peak until 2 days after LPS injection. Of 480 inflammation-related genes present on a microarray, 29 transcripts were robustly up-regulated and 90% of them were also detected in LPS stimulated primary microglia (PM) cultures. Further in vitro to in vivo comparison showed that the counter regulation response observed in vivo was less evident in vitro, as transcript levels in PM decreased relatively little over 16 h. This apparent deficiency of homeostatic control of the innate immune response in cultures may also explain why a group of genes comprising tnf receptor associated factor-1, endothelin-1 and schlafen-1 were regulated strongly in vitro, but not in vivo. When the overall LPS-induced transcriptional response of PM was examined on a large Affymetrix chip, chemokines and cytokines constituted the most strongly regulated and largest groups. Interesting new microglia markers included interferon-induced protein with tetratricopeptide repeat (ifit), immune responsive gene-1 (irg-1) and thymidylate kinase family LPSinducible member (tyki). The regulation of the former two was confirmed on the protein level in a proteomics study. Furthermore, conspicuous regulation of several gene clusters was identified, for instance that of genes pertaining to the extra-cellular matrix and enzymatic regulation thereof. Although most inflammatory genes induced in vitro were transferable to our in vivo model, the observed discrepancy for some genes potentially represents regulatory factors present in the central nervous system (CNS) but not in vitro.

Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations

International Journal of Molecular Sciences, 2017

Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals' binding affinity, or similar expression in activated microglia regardless of its polarization (pro-or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians' expectations.