Dependence of locally linear embedding on the regularization parameter (original) (raw)
This paper deals with a method, called locally linear embedding (LLE). It is a nonlinear dimensionality reduction technique that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional data and attempts to discover a nonlinear structure (including manifolds) in high-dimensional data. In practice, the nonlinear manifold learning methods are applied in image processing, text mining, etc. The implementation of the LLE algorithm is fairly straightforward, because the algorithm has only two control parameters: the number of neighbors of each data point and the regularization parameter. The mapping quality is quite sensitive to these parameters. In this paper, we propose a new way of selecting a regularization parameter of a local Gram matrix.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.