Trajectory Encoding in the Hippocampus and Entorhinal Cortex (original) (raw)

The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation

2014

Background: Despite decades of research on spatial memory, we know surprisingly little about how the brain guides navigation to goals. While some models argue that vectors are represented for navigational guidance, other models postulate that the future path is computed. Although the hippocampal formation has been implicated in processing spatial goal information, it remains unclear whether this region processes pathor vector-related information. Results: We report neuroimaging data collected from subjects navigating London's Soho district; these data reveal that both the path distance and the Euclidean distance to the goal are encoded by the medial temporal lobe during navigation. While activity in the posterior hippocampus was sensitive to the distance along the path, activity in the entorhinal cortex was correlated with the Euclidean distance component of a vector to the goal. During travel periods, posterior hippocampal activity increased as the path to the goal became longer, but at decision points, activity in this region increased as the path to the goal became closer and more direct. Importantly, sensitivity to the distance was abolished in these brain areas when travel was guided by external cues.

Cognitive maps beyond the hippocampus

Hippocampus, 1997

We present a conceptual framework for the role of the hippocampus and its afferent and efferent structures in rodent navigation. Our proposal is compatible with the behavioral, neurophysiological, anatomical, and neuropharmacological literature, and suggests a number of practical experiments that could support or refute it.

Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation

Neural Networks, 2003

We investigated the importance of hippocampal theta oscillations and the significance of phase differences of theta modulation in the cortical regions that are involved in goal-directed spatial navigation. Our models used representations of entorhinal cortex layer III (ECIII), hippocampus and prefrontal cortex (PFC) to guide movements of a virtual rat in a virtual environment. The model encoded representations of the environment through long-term potentiation of excitatory recurrent connections between sequentially spiking place cells in ECIII and CA3. This encoding required buffering of place cell activity, which was achieved by a short-term memory (STM) in EC that was regulated by theta modulation and allowed synchronized reactivation with encoding phases in ECIII and CA3. Inhibition at a specific theta phase deactivated the oldest item in the buffer when new input was presented to a full STM buffer. A 1808 phase difference separated retrieval and encoding in ECIII and CA3, which enabled us to simulate data on theta phase precession of place cells. Retrieval of known paths was elicited in ECIII by input at the retrieval phase from PFC working memory for goal location, requiring strict theta phase relationships with PFC. Known locations adjacent to the virtual rat were retrieved in CA3. Together, input from ECIII and CA3 activated predictive spiking in cells in CA1 for the next desired place on a shortest path to a goal. Consistent with data, place cell activity in CA1 and CA3 showed smaller place fields than in ECIII. q

Memory Modulates Journey-Dependent Coding in the Rat Hippocampus

Journal of Neuroscience, 2011

Neurons in the rat hippocampus signal current location by firing in restricted areas called place fields. During goal-directed tasks in mazes, place fields can also encode past and future positions through journey-dependent activity, which could guide hippocampus-dependent behavior and underlie other temporally extended memories, such as autobiographical recollections. The relevance of journey-dependent activity for hippocampal-dependent memory, however, is not well understood. To further investigate the relationship between hippocampal journey-dependent activity and memory we compared neural firing in rats performing two mnemonically distinct but behaviorally identical tasks in the plus maze: a hippocampus-dependent spatial navigation task, and a hippocampus-independent cue response task. While place, prospective, and retrospective coding reflected temporally extended behavioral episodes in both tasks, memory strategy altered coding differently before and after the choice point. Before the choice point, when discriminative selection of memory strategy was critical, a switch between the tasks elicited a change in a field's coding category, so that a field that signaled current location in one task coded pending journeys in the other task. After the choice point, however, when memory strategy became irrelevant, the fields preserved coding categories across tasks, so that the same field consistently signaled either current location or the recent journeys. Additionally, on the start arm firing rates were affected at comparable levels by task and journey, while on the goal arm firing rates predominantly encoded journey. The data demonstrate a direct link between journey-dependent coding and memory, and suggest that episodes are encoded by both population and firing rate coding.

Lateralized human hippocampal activity predicts navigation based on sequence or place memory

Proceedings of the National Academy of Sciences, 2010

The hippocampus is crucial for both spatial navigation and episodic memory, suggesting that it provides a common function to both. Here we adapt a spatial paradigm, developed for rodents, for use with functional MRI in humans to show that activation of the right hippocampus predicts the use of an allocentric spatial representation, and activation of the left hippocampus predicts the use of a sequential egocentric representation. Both representations can be identified in hippocampal activity before their effect on behavior at subsequent choice-points. Our results suggest that, rather than providing a single common function, the two hippocampi provide complementary representations for navigation, concerning places on the right and temporal sequences on the left, both of which likely contribute to different aspects of episodic memory. allocentric | decision making | egocentric | episodic memory | cognitive control T he hippocampus plays a crucial role in both spatial navigation and episodic memory (1-6). However, the nature of the fundamental hippocampal process or representation that might underlie both functions remains the subject of intense speculation, including suggestions that it is best characterized as associative , sequential (8), flexible relational (2), allocentric (1, 5, 9), or spatial contextual (4, 5). Similar speculation surrounds the nature of any lateralization of these representations (1, 5, 10), and whether the firing of hippocampal neurons in freely moving rodents reflects allocentric position, spatial context, or sequential position along a route (5, 11, 12). Here we show that the hippocampus predicts and supports navigation via sequential representations in the left hippocampus and allocentric spatial representations in the right hippocampus. These complementary lateralized representations suggest an explanation for the multiple hippocampal contributions to different aspects of spatial and episodic memory.

Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity

Biological Cybernetics, 2000

A computational model of hippocampal activity during spatial cognition and navigation tasks is presented. The spatial representation in our model of the rat hippocampus is built on-line during exploration via two processing streams. An allothetic vision-based representation is built by unsupervised Hebbian learning extracting spatio-temporal properties of the environment from visual input. An idiothetic representation is learned based on internal movement-related information provided by path integration. On the level of the hippocampus, allothetic and idiothetic representations are integrated to yield a stable representation of the environment by a population of localized overlapping CA3-CA1 place fields. The hippocampal spatial representation is used as a basis for goal-oriented spatial behavior. We focus on the neural pathway connecting the hippocampus to the nucleus accumbens. Place cells drive a population of locomotor action neurons in the nucleus accumbens. Reward-based learning is applied to map place cell activity into action cell activity. The ensemble action cell activity provides navigational maps to support spatial behavior. We present experimental results obtained with a mobile Khepera robot.

A Hierarchy of Associations in Hippocampo-Cortical Systems: Cognitive Maps and Navigation Strategies

Neural Computation, 2005

In this letter we describe a hippocampo-cortical model of spatial processing and navigation based on a cascade of increasingly complex associative processes that are also relevant for other hippocampal functions such as episodic memory. Associative learning of different types and the related pattern encoding-recognition take place at three successive levels: (1) an object location level, which computes the landmarks from merged multimodal sensory inputs in the parahippocampal cortices; (2) a subject location level, which computes place fields by combination of local views and movement-related information in the entorhinal cortex; and (3) a spatiotemporal level, which computes place transitions from contiguous place fields in the CA3-CA1 region, which form building blocks for learning temporospatial sequences. At the cell population level, superficial entorhinal place cells encode spatial, context-independent maps as landscapes of activity; populations of transition cells in the CA3-...

The Role of Path Integration on Neural Activity in Hippocampus and Medial Entorhinal Cortex

2012

This thesis explores the role of path integration on the firing of hippocampal place cells and medial entorhinal grid cells. Grid cells fire at equidistant locations in an environment, indicating that they keep track of the distance and direction an animal has moved in an environment. One class of model of path integration uses a continuous attractor network to update position information. The first part of this thesis showed that such a network can generate a “look-ahead” of neural activity that sweeps through the positions just visited and about to be visited, on the short time scale that is observed in vivo. Adding intrinsic currents to the neurons in the network model allowed this look-ahead to recur every theta cycle, and generate grid fields of a size comparable to data. Grid cells are a major input the hippocampus, and are hypothesized to be the source of the place specificity of place cells. When an animal explores an open environment, place cells are active in a particular ...

Episodes in Space: A Modeling Study of Hippocampal Place Representation

Lecture Notes in Computer Science, 2008

A computer model of learning and representing spatial locations is studied. The model builds on biological constraints and assumptions drawn from the anatomy and physiology of the hippocampal formation of the rat. The emphasis of the presented research is on the usability of a computer model originally proposed to describe episodic memory capabilities of the hippocampus in a spatial task. In the present model two modalities -vision and path integration -are contributing to the recognition of a given place. We study how place cell activity emerges due to Hebbian learning in the model hippocampus as a result of random exploration of the environment. The model is implemented in the Webots mobile robotics simulation software. Our results show that the location of the robot is well predictable from the activity of a population of model place cells, thus the model is suitable to be used as a basic building block of location-based navigation strategies. However, some properties of the stored memories strongly resembles that of episodic memories, which do not match special spatial requirements.