Modelling the sorption of water–ethanol mixtures in cross-linked ionic and neutral polymers (original) (raw)
Abstract
Water–ethanol sorption in strong sulfonated polystyrene cation-exchangers, in weak acrylic cation-exchangers and in neutral cross-linked dextran gels as well as their elastic properties have been measured. The effect of polymer matrix and cross-link density have been studied. The ionic resins were mainly in the Na+ form. The data have been analyzed by means of thermodynamic mixing models based on the
Figures (11)
WCE, weak cation-exchanger; SCE strong cation-exchanger; NEP, neutral polymer; NA, cross-link density not available. 4Average bead diameter in Na* form in water. ‘Density of the water-swollen Na* resin. °Na* form. 4Shear modulus of the water-swollen polymer. Properties of the polymers Table 1
Size (r;) and surface (g;) parameters, partial molar volumes Viy,; and equivalent volumes Vequiy for the water(1)—ethanol(2)—polymer(3) sys- tems at 298 K
Water(1)—ethanol(2) parameters, R? and AAD values for water-ethanol VLE system at 298 K *E;; parameters have different definitions in different models. Flory: yj; [-], bi [-], UNIQUAC: aj (K), NRF: AE;; (J/mol). >Concentration-dependent interaction parameter. “Refined parameters compared to Tiihonen et al. (1999a). Table 3
Water(1)—polymer(3) parameters, R? and AAD values for water—linear polymer system at 298 K *E;; parameters have different definitions in different models. Flory: yi; [-], bi [-], UNIQUAC: aj (K), NRF: AE;; (J/mol). >Concentration-dependent interaction parameter. °Refined parameters compared to Tiihonen et al. (1999a). {Total coordination number, z;, is 10 (Abrams & Prausnitz, 1975) and has here divided in two groups, Za and Zp. Table 4
°F; parameters have different definitions in different models. Flory: y;; [-], bi [-], UNIQUAC: aj (K), NRF: AE;; (J/mol) >Concentration-dependent interaction parameter. °Refined parameters compared to Tiihonen et al. (1999a). 4Total coordination number, z;, is 10 (Abrams & Prausnitz, 1975) and has here divided in two groups, za and Zp. Comparison of the models. Ethanol(2)—polymer(3) interaction and elastic parameters for water(1)-—ethanol(2)—polymer(3) system at 298 K Table 5
Elastic parameters, statistical values and the number of datapoints, N, for NRF 2 calculated from Flory’s elasticity modified by Gusler and Cohen (1994) for water(1)—ethanol(2)—polymer(3) system at 298 K
'Number of statistical segments in the chain. >Number of elastic datapoints at different swelling degrees. ‘Estimated based on the SCE X8 Na* shear modulus in water and SCE X8 Na* water—ethanol sorption data, the SCE Nat X4 and X5.5 / nd Netat values. NRF 2 ethanol(2)-resin(3) interaction and elastic parameters calculated by means of Eq. (5), experimental constant Boon and water(1)—ethanol( sorption fitting statistics for the NRF 2 and elastic term from Eq. (5)
Fig. 2. Comparison of the elasticity models. (0) SCE X4 in Nat form, (HM) WCE X4 in Nat form, (A) NEP G25. Dashed lines represent Flory’s elasticity (Eq. (7)) (Flory, 1953) and continuous lines Langevin approximation (Eq. (6)) (Dubrovskii et al., 1992).
Fig. 1. Comparison of the models on water and ethanol sorption from water—ethanol mixtures. A: SCE in Na* form, X4. B: WCE in Nat form, X3. C: NEP, G25. Open symbols are for ethanol and closed symbols for water. The solvent component in the liquid is ethanol for ethanol data and water for water data. Lines for mixing equations: (-- --) Flory (Flory 1) (Flory, 1953), (—-—) Flory with linearly concentration-dependent param- eters (Flory 2) (Yilmaz & McHugh, 1986), (—--—) modified UNIQUAC (Larsen et al., 1987), (- -) NRF with one resin interaction parameter (NRF 1) (Panayiotou & Vera, 1980), (——) NRF with two resin interac- tion parameters (NRF 2) (Panayiotou & Vera, 1980; Prange et al., 1989). Elasticity contribution is calculated from Eq. (4).
Fig. 3. Effect of polymer matrix, cross-linkage and ionic form on water—ethanol sorption from water—ethanol mixtures at 298 K. A: SCE in Nat form, (0) X4, (CI) X5.5, (A) X8. B: SCE in Ca** form, (CK) X5.5, (A) X8. C: WCE in Nat form, (0) X4, (C1) X6, (A) IRC86 (unknown cross-link density). D: NEP, (co) G75, (L!) G50, (A) G25. Open symbols are for ethanol and closed symbols for water. The solvent component in the liquid is ethanol for ethanol data and water for water data. Dashed and continuous lines are calculated with the NRF 2 model (Eq. (3)) combined with the elastic term of Eq. (4) and Eq. (5), respectively.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (37)
- Abrams, D. S., & Prausnitz, J. M. (1975). Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems. A.I.Ch.E. Journal, 21(1), 116-128.
- Bergst om, J. S., & Boyce, M. C. (2001). Deformation of elastomeric networks: Relation between molecular level deformation and classical statistical mechanics models of rubber elasticity. Macromolecules, 34(3), 614-626.
- Boyd, G. E., & Soldano, B. A. (1953). Osmotic free energies of ion exchangers. Zeitschrift f ur Electrochemie, 56, 162-170.
- Briscoe, B. J., Liu, K. K., & Williams, D. R. (1998). Adhesive contact deformation of a single microelastomeric sphere. Journal of Colloid and Interface Science, 200, 256-264.
- Dorfner, K. (1991). Synthetic ion exchange resins. In K. Dorfner (Ed.). Ion exchangers (pp. 364 -375). Berlin: Walter de Gruyter & Co.
- Dubrovskii, S. A., Ilavsky, M., & Arkhipovich, G. N. (1992). The elastic behaviour of weakly ionic gels. Polymer Bulletin, 29, 587-594.
- Flory, P. J. (1953). Principles of polymer chemistry (pp. 495 -563). Ithaca, New York: Cornell University Press.
- Gluekauf, E. A. (1952). Theoretical treatment of cation exchangers I. The prediction of equilibrium constants from osmotic data. Proceedings of Royal Society, 214A, 207-225.
- Gusler, G. M., & Cohen, Y. (1994). Equilibrium swelling of highly cross-linked polymeric resins. Industrial & Engineering Chemistry Research, 33(10), 2345-2357.
- Haario, H. (1994). MODEST users manual, Profmath Oy, Helsinki.
- Hall, D. J., Mash, C. J., & Pemberton, R. C. (1979). Vapour-liquid equilibria for the systems water + methanol, water + ethanol, methanol + ethanol, water+methanol + ethanol at 298:15 K determined by a rapid transpiration method NPL-CHEM-95 (Report) (pp. 1-36).
- Hasa, J., Ilavsky, M., & Dusek, K. (1975). Deformational, swelling, and potentiometric behavior of ionized poly(methacrylic acid) gels. I. Theory. Journal of Polymer Science: Polymer Physics Edition, 13, 253-262.
- Haynes, C. A., Beynon, R. A., King, R. S., Blanch, H. W., & Prausnitz, J. M. (1989). Thermodynamic properties of aqueous polymer solutions: Poly(ethylene glycol)=dextran. Journal of Physical Chemistry, 93(14), 5612-5617.
- Hiraoka, K., & Yokoyama, T. (1990). Analyses of sorption isotherms of poly(acrylic acid) salts according to sorption theories. Kenkyu Hokoku-Nagasaki Daigaku Kogakubu, 20(34), 51-58 (in Japanese).
- Hirata, M., Ohe, S., & Nagahama, K. (1975). Computer aided data book of vapor-liquid equilibria (pp. 530 -551). Tokyo: Kodansha-Elsevier.
- H ogfeldt, E. (1959). On ion exchange equilibria VI. The heterogeneity of ion exchangers. Arkiv f or Kemi, 49(13), 491-506.
- Knaebel, A., Rebre, S. R., & Lequeux, F. (1997). Determination of the elastic modulus of superadsorbent gel beads. Polymer Gels and Networks, 5, 107-121.
- Larsen, B. L., Rasmussen, P., & Fredenslund, A. (1987). A modiÿed UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Industrial & Engineering Chemistry Research, 26(11), 2274-2286.
- van der Maarel, J. R. C., Jesse, W., Kuil, M. E., & Lapp, A. (1996). Structure and charge distribution in poly(styrenesulfonate) ion exchange resins. Macromolecules, 29, 2039-2045.
- Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. Journal of Chemical Physics, 51(3), 924-933.
- Mazzotti, M., Neri, B., Gelosa, D., Kruglov, A., & Morbidelli, M. (1997). Kinetics of liquid-phase esteriÿcation catalyzed by acidic resins. Industrial & Engineering Chemistry Research, 36(1), 3-10.
- Nandan, D., & Gupta, A. R. (1977). Solvent sorption isotherms, swelling pressures, and free energies of swelling of polystyrenesulfonic acid type cation exchangers in water and methanol. Journal of Physical Chemistry, 81(12), 1174-1179.
- Panayiotou, C., & Vera, J. H. (1980). The quasi-chemical approach for non-randomness in liquid mixtures. Expressions for local surfaces and local compositions with an application to polymer solutions. Fluid Phase Equilibria, 5, 55-80.
- Peres, A. M., & Macedo, E. A. (1997). Solid-liquid equilibrium of sugars in mixed solvents. Entropie, 71, 202-203.
- Prange, M. M., Hooper, H. H., & Prausnitz, J. M. (1989). Thermodynamics of aqueous systems containing hydrophilic polymers or gels. A.I.Ch.E. Journal, 35(4), 803-813.
- Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical recipes (pp. 254 -326). Cambridge: Cambridge University Press.
- Reddy, M., Marinsky, J. A., & Sarkar, A. (1970). Osmotic properties of divalent metal polystyrenesulfonates. Journal of Physical Chemistry, 74(22), 3891-3895.
- Ruike, M., Inoue, T., Takada, S., Horie, K., & Murase, N. (1999). Water sorption and drying behavior of crosslinked dextrans. Bioscience, Biotechnology, and Biochemistry, 63(2), 271-275.
- Samuelson, O. (1963). Ion exchange separation in analytical chemistry (pp. 138-148). New York: Wiley, Inc.
- Texter, J. A., Kellerman, R., & Klier, K. (1975). Water sorption in a dextran gel. Carbohydrate Research, 41, 191-210.
- Tiihonen, J., Laatikainen, M., Markkanen, I., & Paatero, E. (1999a). Sorption of neutral components in ion-exchange resins. 1. E ect of cross-link density and counterion on selective sorption of water-ethanol mixtures in sulfonated PS-DVB resins. Industrial & Engineering Chemistry Research, 38(12), 4832-4842.
- Tiihonen, J., Laatikainen, M., Markkanen, I., Paatero, E., & Jumppanen, J. (1999b). Sorption of neutral components in ion-exchange resins. 2. Sorption of d-xylose in sulfonated PS-DVB resins from water-ethanol mixtures. Industrial & Engineering Chemistry Research, 38(12), 4843-4849.
- Tiihonen, J., Markkanen, I., Laatikainen, M., & Paatero, E. (2001). Elasticity of ion-exchange resin beads in solvent mixtures. Journal of Applied Polymer Science, 82, 1256-1264.
- Timmermann, E. O. (1970). Concentrated polyelectrolyte solutions and ion exchangers. II. Swelling and partial molar volumes (German). Zeitscrift f ur Physikalische Chemie Neue Folge, 72(1-3), 140-152.
- Treloar, L. R. G. (1975). The physics of rubber elasticity (3rd ed.) (pp. 113-116). Oxford: Clarendon Press.
- Waxman, M. H., Sundheim, B. R., & Gregor, H. P. (1953). Studies on ion exchange resins. VI. Water vapor sorption by polystyrenesulfonic acid. Journal of Physical Chemistry, 57, 969-973.
- Yilmaz, L., & McHugh, A. J. (1986). Analysis of nonsolvent- solvent-polymer phase diagrams and their relevance to membrane formation modeling. Journal of Applied Polymer Science, 31, 997- 1018.