Cortically controlled brain-machine interface (original) (raw)

Cortical and subcortical mechanisms of brain-machine interfaces

Human brain mapping, 2017

Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controllin...

Cortical Modulations Increase in Early Sessions with Brain-Machine Interface

PLOS One, 2007

Background. During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs) extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. Methodology/Principal Findings. Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. Conclusions/Significance. We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.

Toward More Versatile and Intuitive Cortical Brain–Machine Interfaces

Current Biology, 2014

Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics.

Neural population partitioning and a concurrent brain-machine interface for sequential motor function

Nature Neuroscience, 2012

While brain-machine interfaces (BMIs) have largely focused on performing single-targeted movements, many natural tasks involve planning a complete sequence of such movements before execution. For these tasks, a BMI that can concurrently decode the full planned sequence prior to its execution may also consider the higher-level goal of the task to reformulate and perform it more effectively. Here, we show that concurrent BMI decoding is possible. Using population-wide modeling, we discover two distinct subpopulations of neurons in the rhesus monkey premotor cortex that allow two planned targets of a sequential movement to be simultaneously held in working memory without degradation. Such surprising stability occurred because each subpopulation encoded either only currently held or only newly added target information irrespective of the exact sequence. Based on these findings, we develop a BMI that concurrently decodes a full motor sequence in advance of movement and then can accurately execute it as desired.

Interfacing to the brain's motor decisions

Journal of Neurophysiology, 2016

It has been long known that neural activity, recorded with electrophysiological methods, contains rich information about a subject’s motor intentions, sensory experiences, allocation of attention, action planning, and even abstract thoughts. All these functions have been the subject of neurophysiological investigations, with the goal of understanding how neuronal activity represents behavioral parameters, sensory inputs, and cognitive functions. The field of brain-machine interfaces (BMIs) strives for a somewhat different goal: it endeavors to extract information from neural modulations to create a communication link between the brain and external devices. Although many remarkable successes have been already achieved in the BMI field, questions remain regarding the possibility of decoding high-order neural representations, such as decision making. Could BMIs be employed to decode the neural representations of decisions underlying goal-directed actions? In this review we lay out a fr...

Connecting cortex to machines: recent advances in brain interfaces

Recent technological and scientific advances have generated wide interest in the possibility of creating a brain-machine interface (BMI), particularly as a means to aid paralyzed humans in communication. Advances have been made in detecting neural signals and translating them into command signals that can control devices. We now have systems that use externally derived neural signals as a command source, and faster and potentially more flexible systems that directly use intracortical recording are being tested. Studies in behaving monkeys show that neural output from the motor cortex can be used to control computer cursors almost as effectively as a natural hand would carry out the task. Additional research findings explore the possibility of using computers to return behav-iorally useful feedback information to the cortex. Although significant scientific and technological challenges remain, progress in creating useful human BMIs is accelerating.

Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study

The journal of spinal cord medicine, 2017

Context Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications. Findings Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular...

A Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys

Science Translational Medicine, 2013

Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to severely paralyzed patients. However, previous BMIs enabled only single arm functionality, and control of bimanual movements was a major challenge. Here, we developed and tested a bimanual BMI that enabled rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374-497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a 5 th order unscented Kalman filter (UKF). The UKF is well-suited for BMI decoding because it accounts for both characteristics of reaching movements and their representation by cortical neurons. The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control.