Review article: Regenerative techniques for repair of rotator cuff tears (original) (raw)
Related papers
Tissue engineering for rotator cuff repair: An evidence-based systematic review
2012
The purpose of this systematic review was to address the treatment of rotator cuff tears by applying tissue engineering approaches to improve tendon healing, specifically platelet rich plasma (PRP) augmentation, stem cells, and scaffolds. Our systematic search was performed using the combination of the following terms: "rotator cuff ", "shoulder", "PRP", "platelet rich plasma", "stemcells", "scaffold", "growth factors", and "tissue engineering". No level I or II studies were found on the use of scaffolds and stem cells for rotator cuff repair. Three studies compared rotator cuff repair with or without PRP augmentation. All authors performed arthroscopic rotator cuff repair with different techniques of suture anchor fixation and different PRP augmentation. The three studies found no difference in clinical rating scales and functional outcomes between PRP and control groups. Only one study showed clinical statistically significant difference between the two groups at the 3-month follow up. Any statistically significant difference in the rates of tendon rerupture between the control group and the PRP group was found using the magnetic resonance imaging. The current literature on tissue engineering application for rotator cuff repair is scanty. Comparative studies included in this review suggest that PRP augmented repair of a rotator cuff does not yield improved functional and clinical outcome compared with non-augmented repair at a medium and long-term followup.
Augmentation of Rotator Cuff Repair With Soft Tissue Scaffolds
Orthopaedic Journal of Sports Medicine, 2015
Background Tears of the rotator cuff are one of the most common tendon disorders. Treatment often includes surgical repair, but the rate of failure to gain or maintain healing has been reported to be as high as 94%. This has been substantially attributed to the inadequate capacity of tendon to heal once damaged, particularly to bone at the enthesis. A number of strategies have been developed to improve tendon-bone healing, tendon-tendon healing, and tendon regeneration. Scaffolds have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects but may not possess situation-specific or durable mechanical and biological characteristics. Purpose To provide an overview of the biology of tendon-bone healing and the current scaffolds used to augment rotator cuff repairs. Study Design Systematic review; Level of evidence, 4. Methods A preliminary literature search of MEDLINE and Embase databases was performed using the terms rotator cuff scaffolds, r...
Regenerative Medicine in Rotator Cuff Injuries
BioMed Research International, 2014
Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP) is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs). Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research.
Supplementation of rotator cuff repair with a bioresorbable scaffold
The American journal of sports medicine
Repair of a torn rotator cuff should have sufficient initial strength of the fixation to permit appropriate rehabilitation. Augmentation with a woven polylactic acid scaffold strengthens repairs of the rotator cuff. Controlled laboratory study. In the suture-anchor model, 10 pairs of sheep infraspinatus tendons were detached and repaired to suture anchors. In half of the matched specimens, the repair was reinforced with a woven poly-lactic acid scaffold repaired with the tendon to bone. In the bone-bridge model, sutures were passed through a trough and over a bone bridge distal to the greater tuberosity; half were reinforced by the scaffold. The repairs were tested to failure with a hydraulic testing machine. The mean ultimate strength of suture-anchor repairs augmented with the scaffold (167.3 +/- 53.9 N) was significantly greater than that of nonaugmented fixation (133.2 +/- 38.2 N). Failure occurred when the tendon pulled through the sutures; the scaffold remained intact. Scaffol...
Biological Augmentation in Repair and Reconstruction of the Rotator Cuff
Operative Techniques in Sports Medicine, 2015
Rotator cuff tears are among the most common causes of pain and disability in the upper extremity. Despite significant advances in repair techniques and instrumentation, re-tear rates after surgery remain high. Numerous avenues of structural and biological augmentation have been explored to increase healing potential and achieve successful outcomes particularly in patients with massive cuff tears and/or those undergoing revision surgery. The purpose of this paper is to present and discuss various techniques currently published that are designed to augment this process through variable methodologies. One common methodology is the use of graft tissue to "load share" with the repair and/or facilitate placement of pluripotential stem cell or growth factors at the site of needed healing. Although this field remains in development, this paper attempts to explain the concepts currently employed and summarize the current FDA approved options.
Tissue Engineering Part B: Reviews, 2017
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Biologically based strategies to augment rotator cuff tears
International Journal of Shoulder Surgery, 2012
Lesions of the rotator cuff (RC) are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords "tendon," "rotator cuff," "augmentation," "growth factor," "platelet-rich fibrin," and "platelet-rich plasma" for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.
Arthroscopic repair of rotator cuff tears using extracellular matrix graft
Arthroscopy techniques, 2014
Despite advances in surgical technology, as well as generally good outcomes, repairs of full-thickness rotator cuff tears show a retear rate of 25% to 57% and may fail to provide full return of function. The repairs tend to fail at the suture-tendon junction, which is due to several factors, including tension at the repair site, quality of the tendon, and defective tissue repair. One strategy to augment repair of large to massive rotator cuff tears is the development of biological scaffold materials, composed of extracellular matrix (ECM). The goal is to strengthen and evenly distribute the mechanical load across the repair site, thus minimizing the rupture risk of the native tendon while providing the biological elements needed for healing. The promising results of ECM-derived materials and their commercial availability have increased their popularity among shoulder surgeons. In contrast to a traditional open or arthroscopically assisted mini-open approach, this completely arthrosc...
Biomechanical and Biologic Augmentation for the Treatment of Massive Rotator Cuff Tears
The American Journal of Sports Medicine, 2010
Recent studies have reported that massive rotator cuff tears do not heal as predictably as, and may have diminished clinical outcomes compared with, smaller rotator cuff tears. An improved understanding of the biologic degeneration and the biomechanical alterations of massive rotator cuff tears should provide better strategies to optimize outcomes. The approach to patients with massive rotator cuff tears requires careful assessment of the patient and the extent of rotator cuff degeneration to determine the appropriate treatment. For a rotator cuff tear that is repairable, the goal is to produce a tension-free, anatomical repair that restores the footprint using soft tissue releases and various suturing techniques, including double-row, transosseous-equivalent suture bridges or the rip-stop stitch. For irreparable cuff tears, the surgeon may elect to proceed with 1 of 2 approaches: (1) palliative surgical treatment-that is, rotator cuff debridement, synovectomy, biceps tenotomy, tuberoplasty and/or nonanatomical repair with partial repair; or (2) salvage treatment with various tendon transfers. Even though the biomechanical constructs for rotator cuff repairs have been improved, the integrity of the repair still depends on biologic healing at the tendon-to-bone junction. There has been much interest in the development of a scaffold to bridge massive rotator cuff tears and adjuvant biologic modalities including growth factors and tenocyte-seeded scaffolds to augment tendon-to-bone healing. The treatment of rotator cuff disease has improved considerably, but massive rotator cuff tears continue to pose a challenging problem for orthopaedic surgeons.
Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model
Journal of Orthopaedic Research, 2016
To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering.