Isolation of a petite mutant from a histidine auxotroph of Candida albicans and its characterization (original) (raw)
Related papers
Proteomic analysis of cytosolic proteins associated with petite mutations in Candida glabrata
Brazilian Journal of Medical and Biological Research, 2010
The incidence of superficial or deep-seated infections due to Candida glabrata has increased markedly, probably because of the low intrinsic susceptibility of this microorganism to azole antifungals and its relatively high propensity to acquire azole resistance. To determine changes in the C. glabrata proteome associated with petite mutations, cytosolic extracts from an azoleresistant petite mutant of C. glabrata induced by exposure to ethidium bromide, and from its azole-susceptible parent isolate were compared by two-dimensional polyacrylamide gel electrophoresis. Proteins of interest were identified by peptide mass fingerprinting or sequence tagging using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Tryptic peptides from a total of 160 Coomassie-positive spots were analyzed for each strain. Sixty-five different proteins were identified in the cytosolic extracts of the parent strain and 58 in the petite mutant. Among the proteins identified, 10 were higher in the mutant strain, whereas 23 were lower compared to the parent strain. The results revealed a significant decrease in the enzymes associated with the metabolic rate of mutant cells such as aconitase, transaldolase, and pyruvate kinase, and changes in the levels of specific heat shock proteins. Moreover, transketolase, aconitase and catalase activity measurements decreased significantly in the ethidium bromide-induced petite mutant. These data may be useful for designing experiments to obtain a better understanding of the nuclear response to impairment of mitochondrial function associated with this mutation in C. glabrata.
Acta Biologica Hungarica, 2001
Molecular typing methods were applied to characterize four stable morphological mutants [1] isolated from a UV-induced unstable mutant colony of Candida albicans. The wild-type strain (ATCC 64385), the intermediate unstable mutant and its four morphologically altered derivatives revealed the same electrophoretic karyotypes. Of the five isoenzymes tested (catalase, malate dehydrogenase, glutamate dehydrogenase, acid phosphatase and b-glucosidase), glutamate dehydrogenase displayed a different enzyme pattern (with an extra band of lower mobility) in the morphological mutants. In contrast, the random amplification DNA polymorphism patterns of the mutant strains differed in all cases from that of the parental strain. Different primers revealed various degrees of DNA polymorphism; one of them (OPC-8) proved to be useful for differentiation between all examined strains. Differences in genetic alterations between spontaneous and induced mutants, and the applicability of different molecular markers to analyse the consequences of induced mutagenesis in C. albicans are discussed.
Journal of Bacteriology
Genetic studies were done with Candida albicans CBS 562. Various auxotrophs were isolated following mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. SAG5 (his4C), a stable histidine auxotroph defective in histidinol dehydrogenase activity, was characterized and chosen for further molecular studies. Therefore, the C. albicans HIS4 gene was isolated. The gene was obtained from a genomic library of the wild-type strain, which was constructed in plasmid YEp24. The HIS4 gene was isolated by transformation of a Saccharomyces cerevisiae strain that carried a his4 mutation. The isolated C. albicans HIS4 gene complemented S. cerevisiae his4A, his4B, his4C, and his4ABC mutant strains, which indicates that the clone contains the entire HIS4 gene. The gene was isolated on plasmid pSTC7, whose physical map was constructed with BamHI, Sail, and EcoRV restriction endonucleases, locating the HIS4 gene on a 14-kilobase-pair DNA fragment. Hybridization experiments with HIS4 and C. albicans genomic DNA showed correspondence between the restriction patterns of the gene with that of the chromosomal DNA, indicating that the gene originates from C. albicans and appears in a single copy. Chromosomes of C. albicans CBS562 and four other strains were resolved by orthogonal-field alteration gel electrophoresis. The electrokaryotyping results showed heterogeneity in chromosomal sizes. The electrokaryotyping of CBS 562 showed a resolution of six chromosomal bands, three of which seemed to be doublets. The C. albicans HIS4 gene was located on the largest resolvable chromosome in all of the strains.
Isolation of a Mycelial Mutant of Candida albicans
Microbiology, 1986
A mutant of Cundida ulbicuns strain MEN, which was unable to produce mycelia in SSV medium and in horse serum at 37 "C, was isolated by a physical separation procedure. The mutant was shown to be derived from the parental strain by growth and morphology studies, sugar uptake and fermentation patterns, and the presence of genetic markers.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1974
1. Growth on glucose of cytoplasmic respiration-deficient (p-) mutants isolated from five strains of Saccharomyces cerevisiae and one strain of Saccharomyces carlsbergensis were arrested by the inhibitor of mitochondrial adenine nucleotide translocation, bongkrekic acid. This indicates that the mitochondrial adenine nucleotide translocation system is preserved and necessary for growth in a number of independent p-mutants. 2. Growth of three "petite-negative" yeast species was arrested by a combined inhibition of respiration by antimycin A and of adenine nucleotide translocation by bongkrekic acid. Thus, the arrest of growth upon inhibition of adenine nucleotide translocation in non-respiring cells is not specific for pmutants and may be a general characteristic of eucaryotic cells.
Microbiology, 1997
In this study, four clinical isolates and over 100 colony morphology mutants, previously derived spontaneously from strain 31 53A during growth on glucose medium, were examined for their utilization of 21 carbon and 3 nitrogen sources at various growth temperatures. The results demonstrated extensive variability in the pattern of assimilation among the mutants and strains, including both the gain and loss of assimilating functions. The persistent alterations in assimilation patterns observed in sequentially produced subclones illustrated an extensive ability of C. albicans populations to constantly produce new combinations of assimilating functions. The variability among spontaneous mutants derived from a single strain explains the well documented variability among natural isolates. From these results we established a relationship between the previously documented broad spectrum of spontaneous chromosomal aberrations in these mutants to the expression of genes controlling the utilization of alternative carbon and nitrogen sources. The existence of cryptic genes, responsible for growth on alternative substrates, was previously deduced from the analysis of other mutants obtained as a response to the restrictive condition on media containing non-assimilating carbon sources. Thus, mutants with altered assimilation functions can arise either on glucose medium or by selection on restricted media. Extensive differences between the patterns of chromosomal aberrations and the distribution of correlated phenotypes in the two groups of mutants indicated that the same phenotypes may be produced by two different mechanisms involving the same or different genes.
Mitochondrial Two-Component Signaling Systems in Candida albicans
Eukaryotic Cell, 2013
Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://ec.asm.org/content/12/6/913#ref-list-1 at: This article cites 43 articles, 29 of which can be accessed free CONTENT ALERTS moreĀ» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on June 12, 2014 by guest http://ec.asm.org/ Downloaded from on June 12, 2014 by guest