Mitochondria as the target of the pro-apoptotic protein Bax (original) (raw)
Related papers
Journal of Biological Chemistry, 2020
Permeabilization of the mitochondrial outer membrane is a key step in the intrinsic apoptosis pathway, triggered by the release of mitochondrial intermembrane space proteins into the cytoplasm. The BCL-2–associated X apoptosis regulator (BAX) protein critically contributes to this process by forming pores in the mitochondrial outer membrane. However, the relative roles of the mitochondrial residence of BAX and its oligomerization in promoting membrane permeabilization are unclear. To this end, using both cell-free and cellular experimental systems, including membrane permeabilization, size-exclusion chromatography-based oligomer, and retrotranslocation assays, along with confocal microscopy analysis, here we studied two BAX C-terminal variants, T182I and G179P. Neither variant formed large oligomers when activated in liposomes. Nevertheless, the G179P variant could permeabilize liposome membranes, suggesting that large BAX oligomers are not essential for the permeabilization. Howeve...
Bax mitochondrial residency is more critical than Bax oligomerization for apoptosis
2019
The Bax protein plays an important effector role in apoptosis by forming pores in the mitochondrial outer membrane. While doing so, Bax forms higher-order oligomers in the membrane, but it remains unclear whether this oligomer formation is essential for pore formation. Using cell-free and cellular experimental systems, we investigated two Bax C-terminus mutants, T182I and G179P. Neither mutant formed large oligomers when activated in liposomes. Nevertheless, the G179P mutant could produce membrane pores, suggesting that large oligomers are not required for permeabilization. Surprisingly, however, when G179P was transduced into Bax/Bak double knockout mouse embryonic fibroblasts, it was purely cytoplasmic and failed to mediate cell death. T182I behaved in the opposite manner. When mixed with liposomes, T182I was inefficient in both membrane insertion and permeabilization. However, transduced into cells, BaxT182I resided constitutively in mitochondria, owing to its slow retrotransloca...
FEBS Letters, 2010
Protein-protein interactions between the Bcl2 family proteins regulate apoptosis. An imbalance of this interaction network due to the upregulation of the proto-oncogene Bcl2 leads to a resistance to apoptosis associated with tumor formation. Bcl2 overexpression inhibits BAX oligomerization and mitochondrial outer membrane (MOM) permeabilization. However, Bcl2 effects on earlier steps of BAX-mediated apoptosis are not fully understood. Bcl2 overexpression inhibits BAX insertion into the MOM but spontaneously increases BAX relocalization to the mitochondria. Also, a physical interaction between BAX and Bcl2 is necessary for these two effects to occur. Taken together, these results suggest upregulated Bcl2 stabilizes BAX loose binding to mitochondrial membranes, inhibiting its insertion into the MOM and consequently cytochrome c release. Structured summary MINT-7945271: BAX (uniprotkb:Q07813) physically interacts (MI:0915) with Bcl-2 (uniprotkb:P10417) by anti bait coimmunoprecipitation (MI:0006) (L. Dejean). FEBS Letters 584 (2010) 3305-3310 j o u r n a l h o m e p a g e : w w w . F E B S L e t t e r s . o r g
Biochemical Journal, 2002
In response to various apoptotic stimuli, Bax, a pro-apoptotic member of the Bcl-2 family, is oligomerized and permeabilizes the mitochondrial outer membrane to apoptogenic factors, including cytochrome c. Bax oligomerization can also be induced by incubating isolated mitochondria containing endogenous Bax with recombinant tBid (caspase-8-cleaved Bid) in itro. The mechanism by which Bax oligomerizes under these conditions is still unknown. To address this question, recombinant human fulllength Bax was purified as a monomeric protein. Bax failed to oligomerize spontaneously in isolated mitochondria or in liposomes composed of either cardiolipin or lipids extracted from mitochondria. However, in the presence of tBid, the protein formed large complexes in mitochondrial membranes and induced the release of cytochrome c. tBid also induced Bax
Regulated Targeting of BAX to Mitochondria
Journal of Cell Biology, 1998
The proapoptotic protein BAX contains a single predicted transmembrane domain at its COOH terminus. In unstimulated cells, BAX is located in the cytosol and in peripheral association with intracellular membranes including mitochondria, but inserts into mitochondrial membranes after a death signal. This failure to insert into mitochondrial membrane in the absence of a death signal correlates with repression of the transmembrane signal-anchor function of BAX by the NH 2 -terminal domain. Targeting can be instated by deleting the domain or by replacing the BAX transmembrane segment with that of BCL-2. In stimulated cells, the contribution of the NH 2 terminus of BAX correlates with further exposure of this domain after mem-brane insertion of the protein. The peptidyl caspase inhibitor zVAD-fmk partly blocks the stimulated mitochondrial membrane insertion of BAX in vivo, which is consistent with the ability of apoptotic cell extracts to support mitochondrial targeting of BAX in vitro, dependent on activation of caspase(s). Taken together, our results suggest that regulated targeting of BAX to mitochondria in response to a death signal is mediated by discrete domains within the BAX polypeptide. The contribution of one or more caspases may reflect an initiation and/or amplification of this regulated targeting.
Bax and Bak Coalesce into Novel Mitochondria-Associated Clusters during Apoptosis
The Journal of Cell Biology, 2001
Bax is a member of the Bcl-2 family of proteins known to regulate mitochondria-dependent programmed cell death. Early in apoptosis, Bax translocates from the cytosol to the mitochondrial membrane. We have identified by confocal and electron microscopy a novel step in the Bax proapoptotic mechanism immediately subsequent to mitochondrial translocation. Bax leaves the mitochondrial membranes and coalesces into large clusters containing thousands of Bax molecules that remain adjacent to mitochondria. Bak, a close homologue of Bax, colocalizes in these apoptotic clusters in contrast to other family members, Bid and Bad, which circumscribe the outer mitochondrial membrane throughout cell death progression. We found the formation of Bax and Bak apoptotic clusters to be caspase independent and inhibited completely and specifically by Bcl-X L , correlating cluster formation with cytotoxic activity. Our results reveal the importance of a novel structure formed by certain Bcl-2 family members during the process of cell death.
Distinct Domains Control the Addressing and the Insertion of Bax into Mitochondria
Journal of Biological Chemistry, 2005
The translocation of Bax from the cytosol into the mitochondrial outer membrane is a central event during apoptosis. We report that beyond the addressing step, which involves its first alpha-helix (halpha1), the helices alpha5 and alpha6 (halpha5alpha6) are responsible for the insertion of Bax into mitochondrial outer membrane bilayer. The translocation of Bax to mitochondria is associated with specific changes in the conformation of the protein that are under the control of two prolines: Pro-13, which controls the unfolding of halpha1, and Pro-168, a proline located immediately before the hydrophobic carboxyl-terminal end (i.e. helix alpha9, halpha9), which controls the disclosure of halpha5alpha6. An additional step, the disruption of an electrostatic bond formed between Asp-33 (halpha1) and Lys-64 (BH3), allows the mitochondria addressing of Bax. We conclude that, although the intramolecular interactions of halpha1 with the BH3 region control the addressing of Bax to mitochondria, the Pro-168 is involved in the control of its membrane insertion through halpha5alpha6.
Movement of Bax from the Cytosol to Mitochondria during Apoptosis
Journal of Cell Biology, 1997
Bax, a member of the Bcl-2 protein family, accelerates apoptosis by an unknown mechanism. Bax has been recently reported to be an integral membrane protein associated with organelles or bound to organelles by Bcl-2 or a soluble protein found in the cytosol. To explore Bcl-2 family member localization in living cells, the green fluorescent protein (GFP) was fused to the NH2 termini of Bax, Bcl-2, and Bcl-XL. Confocal microscopy performed on living Cos-7 kidney epithelial cells and L929 fibroblasts revealed that GFP–Bcl-2 and GFP–Bcl-XL had a punctate distribution and colocalized with a mitochondrial marker, whereas GFP–Bax was found diffusely throughout the cytosol. Photobleaching analysis confirmed that GFP–Bax is a soluble protein, in contrast to organelle-bound GFP–Bcl-2. The diffuse localization of GFP–Bax did not change with coexpression of high levels of Bcl-2 or Bcl-XL. However, upon induction of apoptosis, GFP–Bax moved intracellularly to a punctate distribution that partiall...