Empirical support for an involvement of the mesostriatal dopamine system in human fear extinction (original) (raw)
Related papers
eLife, 2018
Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition or excitation of dopamine neurons at the time of the US omission revealed that this dopamine signal is both necessary for, and sufficient to accelerate, normal fear extinction learning. These results identify a prediction error-like neuronal signal that is necessary to initiate fear extinction and ...
Modulation of the extinction of fear learning
Brain Research Bulletin, 2014
We review recent work on extinction learning with emphasis on its modulation. Extinction is the learned inhibition of responding to previously acquired tasks. Like other forms of learning, it can be modulated by a variety of neurotransmitter systems and behavioral procedures. This bears on its use in the treatment of fear memories, particularly in posttraumatic stress disorder (PTSD), for which it is the treatment of choice, often under the name of exposure therapy. There have not been many laboratories interested in the modulation of extinction, but the available data, although not very abundant, are quite conclusive. Most studies on the nature of extinction and on its modulation have been carried out on fear motivated behaviors, possibly because of their applicability to the therapy of PTSD. A role for d-serine and the glycine site of NMDA receptors has been ascertained in two forms of extinction in the ventromedial prefrontal cortex, basolateral amygdala and dorsal hippocampus. The serine analog, d-cycloserine, has received clinical trials as an enhancer of extinction. The brain histaminergic system acting via H2 receptors, and the endocannabinoid system using CB1 receptors in the ventromedial prefrontal cortex, hippocampus and basolateral amygdala enhance extinction. Dopaminergic D1 and -noradrenergic receptors also modulate extinction by actions on these three structures. Isolated findings suggest roles for on serotonin-1A, dopaminergic-D2 and ␣and -noradrenergic receptors in extinction modulation. Importantly, behavioral tagging and capture mechanisms in the hippocampus have been shown to play a major modulatory role in extinction. In addition, extinction of at least one aversive task (inhibitory avoidance) can be made state dependent on peripheral epinephrine.
A ventral striatal prediction error signal in human fear extinction learning
NeuroImage, 2021
Animal studies have shown that the prediction error (PE) signal that drives fear extinction learning is encoded by phasic activity of midbrain dopamine (DA) neurons. Thus, the extinction PE resembles the appetitive PE that drives reward learning. In humans, fear extinction learning is less well understood. Using computational neuroimaging, a previous study from our group reported hemodynamic activity in the left ventral putamen, a subregion of the ventral striatum (VS), to correlate with a PE function derived from a formal associative learning model. The activity was modulated by genetic variation in a DA-related gene. To conceptually replicate and extend this finding, we here asked whether an extinction PE (EPE) signal in the left ventral putamen can also be observed when genotype information is not taken into account. Using an optimized experimental design for model estimation, we again observed EPE-related activity in the same striatal region, indicating that activation of this region is a feature of human extinction learning. We further observed significant EPE signals across wider parts of the VS as well as in frontal cortical areas. These results may suggest that the prediction errors during extinction learning are available to larger parts of the brain, as has also been observed in human neuroimaging studies of reward PE signaling. Conclusive evidence that the human EPE signal is of DAergic nature is still outstanding.
On the role of subsecond dopamine release in conditioned avoidance
Frontiers in Neuroscience, 2013
Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: (1) fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, (2) the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, (3) over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety (4) the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain's incentive-motivational circuitry. On the role of subsecond dopamine release in conditioned avoidance. Front. Neurosci. 7:96.
Behaviour research and therapy, 2015
Relapse of fear after successful intervention is a major problem in clinical practice. However, little is known about how it is mediated. The current study investigated the effects of instructed extinction and removal of the shock electrode on electrodermal responding (Experiment 1), fear potentiated startle (Experiment 2), and a continuous self-report measure of conditional stimulus valence (Experiments 1 and 2) in human differential fear conditioning. Instructed extinction and removal of the shock electrode resulted in the immediate reduction of differential fear potentiated startle and second interval electrodermal responding, but did not affect self-reported conditional stimulus valence. A separate sample of participants (Experiment 3) who were provided with a detailed description of the experimental scenario predicted the inverse outcome, reduced differential stimulus evaluations and continued differential physiological responding, rendering it unlikely that the current results...
Dopamine-dependent prefrontal reactivations explain long-term benefit of fear extinction
Nature Communications, 2018
Fear extinction does not prevent post-traumatic stress or have long-term therapeutic benefits in fear-related disorders unless extinction memories are easily retrieved at later encounters with the once-threatening stimulus. Previous research in rodents has pointed towards a role for spontaneous prefrontal activity occurring after extinction learning in stabilizing and consolidating extinction memories. In other memory domains spontaneous post-learning activity has been linked to dopamine. Here, we show that a neural activation pattern — evoked in the ventromedial prefrontal cortex (vmPFC) by the unexpected omission of the feared outcome during extinction learning — spontaneously reappears during postextinction rest. The number of spontaneous vmPFC pattern reactivations predicts extinction memory retrieval and vmPFC activation at test 24 h later. Critically, pharmacologically enhancing dopaminergic activity during extinction consolidation amplifies spontaneous vmPFC reactivations and...
The extinction of conditioned fear: structural and molecular basis and therapeutic use
Revista Brasileira de Psiquiatria, 2007
OBJECTIVE: Through association, a large variety of stimuli acquire the property of signaling pleasant or aversive events. Pictures of a wedding or of a plane disaster may serve as cues to recall these events and/or others of a similar nature or emotional tone. Presentation of the cues unassociated with the events, particularly if repeated, reduces the tendency to retrieve the original learning based on that association. This attenuation of the expression of a learned response was discovered by Pavlov 100 years ago, who called it extinction. In this article we review some of the most recent findings about the behavioral and biochemical properties of extinction. RESULTS AND DISCUSSION: It has been shown that extinction is a new learning based on a new link formed by the cues and the absence of the original event(s) which originated the first association. Extinction does not consist of the erasure of the original memory, but of an inhibition of its retrieval: the original response reap...
The inhibition of acquired fear
2004
A conditioned stimulus (CS) associated with a fearsome unconditioned stimulus (US) generates learned fear. Acquired fear is at the root of a variety of disorders, among which are phobias, generalized anxiety, and the posttraumatic stress disorder (PTSD). The simplest way to inhibit learned fear is to extinguish it, which is usually done by repeatedly presenting the CS alone, so that a new association, CS-"no US", will eventually overcome the previously acquired CS-US association. Extinction was first described by Pavlov as a form of "ïnternal inhibition" and was recommended by Freud and Ferenczi in the 1920s (who called it "habituation") as the treatment of choice for phobic disorders. It is used with success till this day, often in association with anxiolytic drugs. Extinction has since then been applied, also successfully and also often in association with anxiolytics, to the treatment of panic, generalized anxiety disorders and, more recently, PTSD. Extinction of learned fear involves gene expression, protein synthesis, N-methyl-D-aspartate (NMDA) receptors and signaling pathways in the hippocampus and the amygdala at the time of the first CS-no US association. It can be enhanced by increasing the exposure to the "no US" component at the time of behavioral testing, to the point of causing the complete uninstallment of the original fear response. Some theorists have recently proposed that reiteration of the CS alone may induce a reconsolidation of the learned behavior instead of its extinction. Reconsolidation would preserve the original memory from the labilization induced by its retrieval. If true, this would of course be disastrous for the psychotherapy of fear-motivated disorders. Here we show that neither the CS nor retrieval cause anything remotely like reconsolida-tion, but just extinction. In fact, our findings indicate that the reconsolidation hypothesis is essentially incorrect, at least for the form of contextual fear most commonly studied in rodents. Therefore, it seems safe to continue using extinction-based forms of therapy for anxiety disorders secondary to acquired fear. Further, it is useful and desirable to devise procedures by which the "no US" component of the extinction is strengthened in order to alleviate the symptoms of victims of acquired fear.