Effects of Strong Magnetic Fields on the Equation of State of Cold Non-Accreting Neutron-Star Crusts (original) (raw)
Related papers
Inner Crusts of Neutron Stars in Strongly Quantizing Magnetic Fields
The Astrophysical Journal, 2011
We study the properties and stability of nuclei in the inner crust of neutron stars in the presence of strong magnetic fields ∼ 10 17 G. Nuclei coexist with a neutron gas and reside in a uniform gas of electrons in the inner crust. This problem is investigated within the Thomas-Fermi model. We extract the properties of nuclei based on the subtraction procedure of Bonche, Levit and Vautherin. The phase space modification of electrons due to Landau quantisation in the presence of strong magnetic fields leads to the enhancement of electron as well as proton fractions at lower densities ∼ 0.001 fm −3. We find the equilibrium nucleus at each average baryon density by minimising the free energy and show that ,in the presence of strong magnetic fields, it is lower than that in the field free case. The size of the spherical cell that encloses a nucleus along with the neutron and electron gases becomes smaller in strong magnetic fields compared with the zero field case. Nuclei with larger mass and atomic numbers are obtained in the presence of strong magnetic fields as compared with cases of zero field.
We have investigated some of the properties of dense sub-nuclear matter at the crustal region (both the outer crust and the inner crust region) of a magnetar. The relativistic version of Thomas-Fermi (TF) model is used in presence of strong quantizing magnetic field for the outer crust matter. The compressed matter in the outer crust, which is a crystal of metallic iron, is replaced by a regular array of spherically symmetric Wigner-Seitz (WS) cells. In the inner crust region, a mixture of iron and heavier neutron rich nuclei along with electrons and free neutrons has been considered. Conventional Harrison-Wheeler (HW) and Bethe-Baym-Pethick (BBP) equation of states are used for the nuclear mass formula. A lot of significant changes in the characteristic properties of dense crustal matter, both at the outer crust and the inner crust, have been observed. Comment: 20 pages, 11 .eps figures, to appear in EPJA
Physical Review C, 2012
The equilibrium properties of the outer crust of cold nonaccreting magnetars (i.e. neutron stars endowed with very strong magnetic fields) are studied using the latest experimental atomic mass data complemented with a microscopic atomic mass model based on the Hartree-Fock-Bogoliubov method. The Landau quantization of electron motion caused by the strong magnetic field is found to have a significant impact on the composition and the equation of state of crustal matter. It is also shown that the outer crust of magnetars could be much more massive than that of ordinary neutron stars.
Effect of the Landau quantization of electrons on the inner crusts of hot neutron stars
Physical Review C, 2021
In the present work we study the effects of strongly quantizing magnetic fields and finite temperature on the properties of inner crusts of hot neutron stars. The inner crust of a neutron star contains neutron-rich nuclei arranged in a lattice and embedded in gases of free neutrons and electrons. We describe the system within the Wigner-Seitz (WS) cell approximation. The nuclear energy is calculated using Skyrme model with SkM* interaction. To isolate the properties of nuclei we follow the subtraction procedure presented by Bonche, Levit and Vautherin, within the Thomas-Fermi approximation. We obtain the equilibrium properties of inner crust for various density, temperatures and magnetic fields by minimizing the free energy of the WS cell satisfying the charge neutrality and β−equilibrium conditions. We infer that at a fixed baryon density and temperature, strong quantizing magnetic field reduces the cell radii, neutron and proton numbers in the cell compared with the field free case. However, the nucleon number in the nucleus increases in presence of magnetic field. The free energy per nucleon also decreases in magnetized inner crust. On the other hand, we find that finite temperature tends to smear out the effects of magnetic field. Our results can be important in the context of r−process nucleosynthesis in the binary neutron star mergers.
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivativeṖ provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained.
Temperature distribution in magnetized neutron star crusts
We investigate the influence of different magnetic field configurations on the temperature distribution in neutron star crusts. We consider axisymmetric dipolar fields which are either restricted to the stellar crust, "crustal fields", or allowed to penetrate the core, "core fields". By integrating the two-dimensional heat transport equation in the crust, taking into account the classical (Larmor) anisotropy of the heat conductivity, we obtain the crustal temperature distribution, assuming an isothermal core. Including classical and quantum magnetic field effects in the envelope as a boundary condition, we deduce the corresponding surface temperature distributions. We find that core fields result in practically isothermal crusts unless the surface field strength is well above 10 15 G while for crustal fields with surface strength above a few times 10 12 G significant deviations from crustal isothermality occur at core temperatures inferior or equal to 10 8 K. At the stellar surface, the cold equatorial region produced by the suppression of heat transport perpendicular to the field by the Larmor rotation of the electrons in the envelope, present for both core and crustal fields, is significantly extended by that classical suppression at higher densities in the case of crustal fields. This can result, for crustal fields, in two small warm polar regions which will have observational consequences: the neutron star has a small effective thermally emitting area and the X-ray pulse profiles are expected to have a distinctively different shape compared to the case of a neutron star with a core field. These features, when compared with X-ray data on thermal emission of young cooling neutron stars, would provide a first step toward a new way of studying the magnetic flux distribution within a neutron star.
Many Aspects of Magnetic Fields in Neutron Stars
Universe, 2018
In this work, we explore different aspects in which strong magnetic fields play a role in the composition, structure and evolution of neutron stars. More specifically, we discuss (i) how strong magnetic fields change the equation of state of dense matter, alter its composition, and create anisotropies, (ii) how they change the structure of neutron stars (such mass and radius) and the formalism necessary to calculate those changes, and (iii) how they can affect neutron stars' evolution. In particular, we focus on how a time-dependent magnetic field modifies the cooling of a special group known as X-ray dim neutron stars.
On the structure of the crust of neutron stars
We calculate the mass and the thickness of neutron star crust s corresponding for different neutron star core mass-radius relations. The system of equilibrium equations, taking into account quantum statistics, electro-weak, and strong interactions, is for mulated within the framework of general relativity in the non-rotating spherically symmetric case . The core is assumed to be composed of interacting degenerate neutrons, protons and electrons in beta equilibrium. The strong interaction between nucleons is modeled through sigma-omega-rho meson exchange in the context of the extended Walecka model.