FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism (original) (raw)
Related papers
Proceedings of the National Academy of Sciences, 2004
Fragile X syndrome is caused by the absence of the fragile X mental retardation protein (FMRP). This RNA-binding protein is widely expressed in human and mouse tissues, and it is particularly abundant in the brain because of its high expression in neurons, where it localizes in the cell body and in granules throughout dendrites. Although FMRP is thought to regulate trafficking of repressed mRNA complexes and to influence local protein synthesis in synapses, it is not known whether it has additional functions in the control of translation in the cell body. Here, we have used recently developed approaches to investigate whether FMRP is associated with the translation apparatus. We demonstrate that, in the brain, FMRP is present in actively translating polyribosomes, and we show that this association is acutely sensitive to the type of detergent required to release polyribosomes from membranous structures. In addition, proteomic analyses of purified brain polyribosomes reveal the presence of several RNA-binding proteins that, similarly to FMRP, have been previously localized in neuronal granules. Our findings highlight the complex roles of FMRP both in actively translating polyribosomes and in repressed trafficking ribonucleoparticle granules.
Lost Once, the Fragile X Mental Retardation Protein is Now Back onto Brain Polyribosomes
RNA Biology, 2005
The Fragile X Mental Retardation protein (FMRP) is an RNA-binding protein and its absence leads to the Fragile X syndrome, the most common form of inherited mental retardation. Because it has been acknowledged for a long time that FMRP is associated with polyribosomal mRNPs in all non-neuronal cellular systems studied so far, it is thought that it regulates translation in neurons also; however, its exact function remains elusive.
Fragile X mental retardation protein regulates translation by binding directly to the ribosome
Molecular cell, 2014
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3b. Dysregulation of GSK3b led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.
Human Molecular Genetics, 1997
The fragile X syndrome results from a transcriptional silencing of the FMR1 gene and the absence of its encoded protein. FMRP is a cytoplasmic RNA-binding protein, whose specific cellular function is still unknown. We present evidence that virtually all detectable cytoplasmic FMRP in mouse NIH 3T3 and human HeLa cells is found strictly in association with mRNA in actively translating polyribosomes. Furthermore, FMRP released from polyribosomes is associated with ribonucleoprotein complexes with sedimentation coefficients of 60-70S and selection on oligo(dT)-cellulose reveals that this association is specific to poly(A)-containing mRNPs. This association with actively translating polyribosomes is not affected by alteration of translational processes induced by serum stimulation and starvation in NIH 3T3 cells, suggesting that FMR1 expression is not cell cycle regulated and that FMRP might have a house-keeping function. FXR2 protein, which is closely related to FMRP, is also detected associated with mRNPs in translating polyribosomes. The results strongly suggest that FMRP might be a mRNA chaperone interacting with mRNP complexes.
Excess ribosomal protein production unbalances translation in Fragile X Syndrome
Dysregulated protein synthesis is a core pathogenic mechanism in Fragile X Syndrome (FX). The mGluR Theory of FX predicts that pathological synaptic changes arise from the excessive translation of mRNAs downstream of mGlu1/5 activation. Here, we use a combination of CA1 pyramidal neuron-specific TRAP-seq and proteomics to identify the overtranslating mRNAs supporting exaggerated mGlu1/5 -induced long-term synaptic depression (mGluR-LTD) in the FX mouse model (Fmr1-/y). Surprisingly, our results identify a robust translation of ribosomal proteins (RPs) upon mGlu1/5 stimulation that coincides with a reduced translation of long mRNAs encoding synaptic proteins. These changes are mimicked and occluded in Fmr1-/y neurons. Inhibiting RP translation significantly impairs mGluR-LTD and prevents the length-dependent shift in the translating population. Together, these results suggest that pathological changes in FX result from a length-dependent alteration in the translating population that ...
Cell, 2001
genes FXR1 and FXR2, encode a small family of RNA binding proteins that share over 60% amino acid identity (Ashley et al., 1993;. As an RNA binding protein, FMRP has been shown to bind to RNA homopolymers as well as a subset of brain transcripts in vitro (Ashley et al., 1993;). complex is composed of several proteins including other RNA binding proteins such as FXR1P and FXR2P (Bar-Atlanta, Georgia 30322 4 Laboratory of Molecular Neuro-Oncology doni et al., 1999; Ceman et al., 1999, 2000; Schenck et al., 2001). Purified FMRP displays an intrinsic RNA The Rockefeller University New York, New York 10021 binding capacity (Brown et al., 1998), and in the cytoplasm, FMRP-mRNP is associated with translating polymutation in the second KH domain of FMRP (I304N), which results in a severe fragile X phenotype, prevents this polyribosome association, suggesting that the Summary FMRP association with polyribosomes is functionally important (De Boulle et al., 1993; Feng et al., 1997a). Fragile X syndrome results from the absence of the RNA binding FMR protein. Here, mRNA was coimmu-
Human Molecular Genetics, 2002
Absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein, is responsible for the Fragile X syndrome, the most common form of inherited mental retardation. FMRP is a cytoplasmic protein associated with mRNP complexes containing poly(A) รพ mRNA. As a step towards understanding FMRP function(s), we have established the immortal STEK Fmr1 KO cell line and showed by transfection assays with FMR1-expressing vectors that newly synthesized FMRP accumulates into cytoplasmic granules. These structures contain mRNAs and several other RNA-binding proteins. The formation of these cytoplasmic granules is dependent on determinants located in the RGG domain. We also provide evidence that FMRP acts as a translation repressor following co-transfection with reporter genes. The FMRP-containing mRNPs are dynamic structures that oscillate between polyribosomes and cytoplasmic granules reminiscent of the Stress Granules that contain repressed mRNAs. We speculate that, in neurons, FMRP plays a role as a mRNA repressor in incompetent mRNP granules that have to be translocated from the cell body to distal locations such as dendritic spines and synaptosomes.
Nucleic acids research, 2018
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the functional deficiency of the fragile X mental retardation protein (FMRP), an RNA-binding protein involved in translational regulation of many messenger RNAs, playing key roles in synaptic morphology and plasticity. To date, no effective treatment for FXS is available. We searched for FMRP targets by HITS-CLIP during early development of multiple mouse brain regions (hippocampus, cortex and cerebellum) at a time of brain development when FMRP is most highly expressed and synaptogenesis reaches a peak. We identified the largest dataset of mRNA targets of FMRP available in brain and we defined their cellular origin. We confirmed the G-quadruplex containing structure as an enriched motif in FMRP RNA targets. In addition to four less represented motifs, our study points out that, in the brain, CTGKA is the prominent motif bound by FMRP, which recognizes it when not engaged in Watson-Crick p...
A Novel Function for Fragile X Mental Retardation Protein in Translational Activation
PLoS Biology, 2009
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the ''kissing complex,'' which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.