Akt as a mediator of cell death (original) (raw)

Biomedical Reviews 2002; 13: 49-61. APOPTOSIS IN THE MAMMALIAN NERVOUS SYSTEM: DEVELOPMENTAL AND CLINICAL IMPLICATIONS

2002

Among the many regulatory steps in brain development is the process of elimination of differentiating neurons at certain stages of maturation through an intrinsic suicide program now widely known as apoptosis. Apoptosis may thus describe a cell death pathway utilized by many developing cells in the nervous system, but may also be activated as a consequence of acute or chronic pathological impulses. Such pathological impulses may include brain injury, cerebral hypoxia-ischemia and the potentials of selected drugs such as N-methyl D-aspartate (NMDA) receptor antagonists, GABA mimetics and ethanol. In recent years, there has been a great interest in mechanisms of cell death in the nervous system and apoptotic cell death has been implicated in many neurodegenerative diseases such as Alzheimer’s disease, amiotrophic lateral sclerosis, Parkinson’s disease and other central and peripheral nervous system disorders. Recent findings have evaluated the contribution of programmed cell death and...

Mechanisms of neural cell death: Implications for development of neuroprotective treatment strategies

Neurorx, 2004

It has been increasingly recognized that cell death phenotypes and their molecular mechanisms are highly diverse. Necrosis is no longer considered a single entity, passively mediated by energy failure. Moreover, caspase-dependent apoptosis is not the only pathway involved in programmed cell death or even the only apoptotic mechanism. Recent experimental work emphasizes the diverse and interrelated nature of cell death mechanisms. Thus, there are both caspase-dependent and caspase-independent forms of apoptosis, which may differ morphologically as well as mechanistically. There are also necrotic-like phenotypes that requirede novo protein synthesis and are, therefore, forms of programmed cell death. In addition, forms of cell death showing certain morphological features of both necrosis and apoptosis have been identified, leading to the term aponecrosis. Considerable experimental evidence also shows that modulation of one form of cell death may lead to another. Together, these observations underscore the need to substantially revise our conceptions about neuroprotection strategies. Use of multiple treatments that target different cell death cascades, or single agents that moderate multiple cell death pathways, is likely to lead to more effective neuroprotection for clinical disorders.

Apoptosis is not an invariable component of in vitro models of cortical cerebral ischaemia

Cell Research, 2004

Characterising the mechanisms of cell death following focal cerebral ischaemia has been hampered by a lack of an in vitro assay emulating both the apoptotic and necrotic features observed in vivo. The present study systematically characterised oxygen-glucose-deprivation (OGD) in primary rat cortical neurones to establish a reproducible model with components of both cell-death endpoints. OGD induced a time-dependent reduction in cell viability, with 80% cell death occurring 24 h after 3 h exposure to 0% O 2 and 0.5 mM glucose. Indicative of a necrotic component to OGDinduced cell death, N-methyl-D-aspartate (NMDA) receptor inhibition with MK-801 attenuated neuronal loss by 60%. The lack of protection by the caspase inhibitors DEVD-CHO and z-VAD-fmk suggested that under these conditions neurones did not die by an apoptotic mechanism. Moderating the severity of the insult by decreasing OGD exposure to 60 min did not reduce the amount of necrosis, but did induce a small degree of apoptosis (a slight reduction in cell death was observed in the presence of 10 µM DEVD-CHO). In separate experiments purported to enhance the apoptotic component, cells were gradually deprived of O 2 , exposed to 4% O 2 (as opposed to 0%) during the OGD period, or maintained in serum-containing media throughout. While NMDA receptor antagonism significantly reduced cortical cell death under all conditions, a caspase-inhibitor sensitive component of cell death was not uncovered. These studies suggest that OGD of cultured cortical cells models the excitotoxic, but not the apoptotic component of cell death observed in vivo.

Raghupathi Brain Pathol 2004 Cell death review

Neuronal and glial cell death and traumatic axonal injury contribute to the overall pathology of traumatic brain injury (TBI) in both humans and animals. In both head-injured humans and following experimental brain injury, dying neural cells exhibit either an apoptotic or a necrotic morphology. Apoptotic and necrotic neurons have been identified within contusions in the acute post-traumatic period, and in regions remote from the site of impact in the days and weeks after trauma, while degenerating oligodendrocytes and astrocytes have been observed within injured white matter tracts. We review and compare the regional and temporal patterns of apoptotic and necrotic cell death following TBI and the possible mechanisms underlying trauma-induced cell death. While excitatory amino acids, increases in intracellular calcium and free radicals can all cause cells to undergo apoptosis, in vitro studies have determined that neural cells can undergo apoptosis via many other pathways. It is generally accepted that a shift in the balance between pro-and anti-apoptotic protein factors towards the expression of proteins that promote death may be one mechanism underlying apoptotic cell death. The effect of TBI on cellular expression of survival promoting-proteins such as Bcl-2, Bcl-x L , and extracellular signal-regulated kinases, and death-inducing proteins such as Bax, c-Jun N-terminal kinase, tumor-suppressor gene, p53, and the calpain and caspase families of proteases are reviewed. In light of pharmacologic strategies that have been devised to reduce the extent of apoptotic cell death in animal models of TBI, our review also considers whether apoptosis may serve a protective role in the injured brain. Together, these observations suggest that cell death mechanisms may be representative of a continuum between apoptotic and necrotic pathways. Pathol 2004;14:215-222.

Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system

BioTechniques, 2002

Apoptosis is a highly conserved energy-requiring program for non-inflammatory cell death that is important in both normal physiology and disease. Numerous techniques have been used to study apoptosis. In the nervous system, apoptosis is necessary for normal development, but it also occurs in many acute and chronic pathologic conditions. This review places commonly used markers of apoptosis and their detection in the context of what is now known about the process of apoptosis. We review the potential role of apoptosis in nervous system and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis). We then describe important morphological, immunocytochemical, and molecular genetic markers for apoptosis, including proteases, signal transduction molecules, and mitochondrial proteins. The possibility of manipulating apoptosis therapeutically in conditions of too many or too few cells is under active investigation.