Oxidative Impairment of Mitochondrial Electron Transport Chain Complexes in Rostral Ventrolateral Medulla Contributes to Neurogenic Hypertension (original) (raw)
Related papers
Redox biology, 2017
Angiotensin II (AngII) elicits the production of superoxide (O2(•-)) from mitochondria in numerous cell types within peripheral organs and in the brain suggesting a role for mitochondrial-produced O2(•-) in the pathogenesis of hypertension. However, it remains unclear if mitochondrial O2(•-) is causal in the development of AngII-induced hypertension, or if mitochondrial O2(•-) in the absence of elevated AngII is sufficient to increase blood pressure. Further, the tissue specific (i.e. central versus peripheral) redox regulation of AngII hypertension remains elusive. Herein, we hypothesized that increased mitochondrial O2(•-) in the absence of pro-hypertensive stimuli, such as AngII, elevates baseline systemic mean arterial pressure (MAP), and that AngII-mediated hypertension is exacerbated in animals with increased mitochondrial O2(•-) levels. To address this hypothesis, we generated novel inducible knock-down mouse models of manganese superoxide dismutase (MnSOD), the O2(•-) scaven...
Review Pathogenesis of Target Organ Damage in Hypertension: Role of Mitochondrial Oxidative Stress
2015
Abstract: Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hy...
Antioxidants & Redox Signaling, 2011
Previous studies identified NADPH oxidases (Nox) and mitochondrial electron transport chain at complex I as major cellular sources of reactive oxygen species (ROS) mediating systemic and cellular responses to intermittent hypoxia (IH). In the present study, we investigated potential interactions between Nox and the mitochondrial complex I and assessed the contribution of mitochondrial ROS in IH-evoked elevation in blood pressure. IH treatment led to stimulus-dependent activation of Nox and inhibition of complex I activity in rat pheochromocytoma (PC)12 cells. After re-oxygenation, Nox activity returned to baseline values within 3 h, whereas the complex I activity remained downregulated even after 24 h. IH-induced complex I inhibition was prevented by Nox inhibitors, Nox2 but not Nox 4 siRNA, in cell cultures and was absent in gp91 phox-=Y (Nox2 knock-out; KO) mice. Using pharmacological inhibitors, we show that ROS generated by Nox activation mobilizes Ca 2+ flux from the cytosol to mitochondria, leading to S-glutathionylation of 75-and 50-kDa proteins of the complex I and inhibition of complex I activity, which results in elevated mitochondrial ROS. Systemic administration of mito-tempol prevented the sustained but not the acute elevations of blood pressure in IH-treated rats, suggesting that mitochondrial-derived ROS contribute to sustained elevation of blood pressure. Antioxid. Redox Signal. 14, 533-542.
Antioxidants & Redox Signaling, 2014
Aims: Angiotensin II (AngII)-induced superoxide (O 2 -) production by the NADPH oxidases and mitochondria has been implicated in the pathogenesis of endothelial dysfunction and hypertension. In this work, we investigated the specific molecular mechanisms responsible for the stimulation of mitochondrial O 2 and its downstream targets using cultured human aortic endothelial cells and a mouse model of AngII-induced hypertension. Results: Western blot analysis showed that Nox2 and Nox4 were present in the cytoplasm but not in the mitochondria. Depletion of Nox2, but not Nox1, Nox4, or Nox5, using siRNA inhibits AngII-induced O 2 production in both mitochondria and cytoplasm. Nox2 depletion in gp91phox knockout mice inhibited AngIIinduced cellular and mitochondrial O 2 and attenuated hypertension. Inhibition of mitochondrial reverse electron transfer with malonate, malate, or rotenone attenuated AngII-induced cytoplasmic and mitochondrial O 2 production. Inhibition of the mitochondrial ATP-sensitive potassium channel (mitoK + ATP ) with 5-hydroxydecanoic acid or specific PKCe peptide antagonist (EAVSLKPT) reduced AngII-induced H 2 O 2 in isolated mitochondria and diminished cytoplasmic O 2 -. The mitoK + ATP agonist diazoxide increased mitochondrial O 2 -, cytoplasmic c-Src phosphorylation and cytoplasmic O 2 suggesting feed-forward regulation of cellular O 2 by mitochondrial reactive oxygen species (ROS). Treatment of AngII-infused mice with malate reduced blood pressure and enhanced the antihypertensive effect of mitoTEMPO. Mitochondria-targeted H 2 O 2 scavenger mitoEbselen attenuated redox-dependent c-Src and inhibited AngII-induced cellular O 2 -, diminished aortic H 2 O 2 , and reduced blood pressure in hypertensive mice. Innovation and Conclusions: These studies show that Nox2 stimulates mitochondrial ROS by activating reverse electron transfer and both mitochondrial O 2 and reverse electron transfer may represent new pharmacological targets for the treatment of hypertension. Antioxid. Redox Signal. 00, 000-000.
Pathogenesis of Target Organ Damage in Hypertension: Role of Mitochondrial Oxidative Stress
International Journal of Molecular Sciences, 2014
Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hypertensive drugs have shown protective effects against mitochondrial-dependent oxidative stress. Notably, few mitochondrial proteins can be considered therapeutic targets on their own. In fact, antioxidant therapies specifically targeted at mitochondria represent promising strategies to reduce mitochondrial dysfunction OPEN ACCESS Int. J. Mol. Sci. 2015, 16 824 and related hypertensive TOD. In the present article, we discuss the role of mitochondrial oxidative stress as a contributing factor to hypertensive TOD development. We also provide an overview of mitochondria-based treatment strategies that may reveal useful to prevent TOD and reduce its progression.
AJP: Heart and Circulatory Physiology, 2008
Vascular superoxide anion (O2•−) levels are increased in DOCA-salt hypertensive rats. We hypothesized that the endothelin (ET)-1-induced generation of ROS in the aorta and resistance arteries of DOCA-salt rats originates partly from xanthine oxidase (XO) and mitochondria. Accordingly, we blocked XO and the mitochondrial oxidative phosphorylation chain to investigate their contribution to ROS production in mesenteric resistance arteries and the aorta from DOCA-salt rats. Systolic blood pressure rose in DOCA-salt rats and was reduced after 3 wk by apocynin [NAD(P)H oxidase inhibitor and/or radical scavenger], allopurinol (XO inhibitor), bosentan (ETA/B receptor antagonist), BMS-182874 (BMS; ETA receptor antagonist), and hydralazine. Plasma uric acid levels in DOCA-salt rats were similar to control unilaterally nephrectomized (UniNx) rats, reduced with allopurinol and bosentan, and increased with BMS. Levels of thiobarbituric acid-reacting substances were increased in DOCA-salt rats ve...
Role of the NADPH Oxidases in the Subfornical Organ in Angiotensin II-Induced Hypertension
Hypertension, 2012
Reactive oxygen species and the NADPH oxidases contribute to hypertension via mechanisms that remain undefined. Reactive oxygen species produced in the central nervous system have been proposed to promote sympathetic outflow, inflammation, and hypertension, but the contribution of the NADPH oxidases to these processes in chronic hypertension is uncertain. We therefore sought to identify how NADPH oxidases in the subfornical organ (SFO) of the brain regulate blood pressure and vascular inflammation during sustained hypertension. We produced mice with loxP sites flanking the coding region of the NADPH oxidase docking subunit p22 phox . SFO-targeted injections of an adenovirus encoding cre-recombinase markedly diminished p22 phox , Nox2, and Nox4 mRNA in the SFO, as compared with a control adenovirus encoding red-fluorescent protein injection. Increased superoxide production in the SFO by chronic angiotensin II infusion (490 ng/kg min –1 ×2 weeks) was blunted in adenovirus encoding cre...
American Journal of Hypertension, 2007
Untreated hypertensive patients show increased oxidative stress and decreased antioxidant enzyme activity in mononuclear cells. Therefore, the objective of this study was to determine whether or not the low antioxidant enzyme activity observed in mononuclear cells of hypertensive subjects is in part dependent on a defective activity of antioxidant mechanisms. Activity and mRNA level of antioxidant enzymes, CuZn-and Mn-superoxide dismutases, catalase, glutathione peroxidase type 1, and glutathione reductase were simultaneously measured in mononuclear cells of controls (n ϭ 38) and hypertensive subjects (n ϭ 35), in the absence of and during antihypertensive treatment. An increase in oxidative stress and a decrease in the activity of cytoplasmic enzymes were observed in untreated hypertensive patients. Concurrently, CuZn-superoxide dismutase and glutathione reductase mRNA levels were significantly reduced, and glutathione peroxidase type 1 mRNA was slightly reduced. In contrast, increased activity and mRNA levels of the mitochondrial Mn-super-oxide dismutase were observed. Antihypertensive treatment, nonpharmacologic with or without a drug regimen of -blocker or angiotensin AT1 receptor blocker was administered for a 3-month period. Afterward, after the improvement in oxidative stress during treatment, a recovery of the cytoplasmic antioxidant enzymatic activity and a more profound decrease in mRNA levels were observed for CuZn-superoxide dismutase, glutathione peroxidase type 1, and glutathione reductase. Meanwhile mitochondrial enzymatic activity decreased, as did the mRNA level. The inadequate response of the main cytoplasmatic antioxidant systems, as well as of the enzymes participating in the maintenance of glutathione levels, may contribute to the vulnerability of hypertensives to oxidative stress. Am J Hypertens 2007;20:62-69
Physiological Research, 2015
Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase-mediated superoxide (O2-) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren-2 renin gene (Ren-2 TGR) and their age-matched normotensive controls ‒ Hannover Sprague Dawley rats (HanSD). We found no difference in the activity of NADPH oxidase measured as a lucigenin-mediated O2- production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren-2 TGR compared ...
Hypertension, 2000
This study was designed to test the hypothesis that stimulation of nicotinamide adenine dinucleotide/ nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase is involved in increased vascular superoxide anion (⅐O 2 Ϫ) production in spontaneously hypertensive rats (SHR). The study was performed in 16-week-old and 30-week-old normotensive Wistar-Kyoto rats (WKY 16 and WKY 30 , respectively) and in 16-week-old and 30-week-old SHR (SHR 16 and SHR 30 , respectively). In addition, 16-week-old SHR were treated with oral irbesartan (average dose 20 mg/kg per day) for 14 weeks (SHR 30-I). Aortic NADH/NADPH oxidase activity was determined by use of chemiluminescence with lucigenin. The expression of p22phox messenger RNA was assessed by competitive reverse transcription-polymerase chain reaction. Vascular responses to acetylcholine were determined by isometric tension studies. Aortic wall structure was studied, determining the media thickness and the cross-sectional area by morphometric analysis. Whereas systolic blood pressure was significantly increased in the 2 groups of hypertensive animals compared with their normotensive controls, no differences were observed in systolic blood pressure between SHR 30 and SHR 16. No other differences in the parameters measured were found between WKY 16 and SHR 16. In SHR 30 compared with WKY 30 , we found significantly greater p22phox mRNA level, NADH/NADPH-driven ⅐O 2 Ϫ production, media thickness, and cross-sectional area and an impaired vasodilation in response to acetylcholine. Treated SHR had similar NADH/NADPH oxidase activity and p22phox expression as the WKY 30 group. The vascular functional and morphological parameters were improved in SHR 30-I. These findings suggest that an association exists between p22phox gene overexpression and NADH/NADPH overactivity in the aortas of adult SHR. Enhanced NADH/NADPH oxidase-dependent ⅐O 2 Ϫ production may contribute to endothelial dysfunction and vascular hypertrophy in this genetic model of hypertension.