Extraction of Singlet States from Noninteracting High-Dimensional Spins (original) (raw)

Abstract

We present a scheme for the extraction of singlet states of two remote particles of arbitrary quantum spin number. The goal is achieved through post-selection of the state of interaction mediators sent in succession. A small number of iterations is sufficient to make the scheme effective. We propose two suitable experimental setups where the protocol can be implemented. Achieving control at the quantum level is a pivotal requirement for the grounding of quantum technology and the development of reliable protocols for information processing. Frequently, state-manipulation of a quantum device needs the connection of remote nodes of a network and the creation of their entangled state. Such a delocalized architecture has received strong experimental attention, especially at the quantum optics level. Heralded entanglement of remote atomic ensembles or individuallytrapped ions has been produced and atom-photon entanglement has been observed [1]. The transfer of prebuilt entanglement to distant systems has been proposed as a way to distribute quantum channels .

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (24)

  1. D.N. Matsukevich, et al., Phys. Rev. Lett. 96, 030405 (2006);
  2. B. Julsgaard et al., Nature (London) 432, 482 (2004);
  3. J. Volz et al., Phys. Rev. Lett. 96, 0304004 (2006).
  4. M. Paternostro, W. Son, and M.S. Kim, Phys. Rev. Lett. 92, 197901 (2004).
  5. D. Yang, S.-J. Gu, and H. Li, quant-ph/0503131;
  6. A.T. Costa, Jr., S. Bose, and Y. Omar, Phys. Rev. Lett. 96, 230501 (2006);
  7. G.L. Giorgi and F. De Pasquale, Phys. Rev. B 74, 153308 (2006).
  8. F. Ciccarello et al., New J. Phys. 8, 214 (2006);
  9. J. Phys. A: Math. Theor. 40, 7993 (2007); Las. Phys. 17, 889 (2007);
  10. F. Ciccarello, G.M. Palma, and M. Zarcone, Phys. Rev. B 75, 205415 (2007)
  11. K. Yuasa and H. Nakazato, J. Phys. A: Math. Theor. 40, 297 (2007).
  12. H. Nakazato, M. Unoki, and K. Yuasa, Phys. Rev. A 70, 012303 (2004);
  13. L.-A. Wu, D.A. Lidar, and S. Schneider, ibid. 70, 032322 (2004);
  14. G. Compagno et al., ibid. 70, 052316 (2004).
  15. M. Paternostro, M.S. Kim, and G.M. Palma, Phys. Rev. Lett. 98, 140504 (2007).
  16. For quantum state engineering via iterated quantum op- erations, see D. Burgarth and V. Giovannetti, New J. Phys. 9, 150 (2007).
  17. S. Datta, Electron Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997).
  18. S. J. Tans et al., Nature (London) 386, 474 (1997).
  19. For the single-impurity case without spin-flip see W. Kim, R.K. Teshima and F. Marsiglio, Europhys. Lett. 69, 595 (2005).
  20. D.D. Awschalom, D. Loss, and N. Samarth, Semicon- ductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
  21. J.-T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001 (2005); ibid. 98, 153003 (2007).
  22. F. Ciccarello et al., in preparation.
  23. M. Atatüre et al., Science 312, 551 (2006);
  24. K. Hennessy, et al., Nature (London) 445, 896 (2007).