The role of phenotypic plasticity in driving genetic evolution (original) (raw)

Assessing the Impacts of Phenotypic Plasticity on Evolution

Integrative and Comparative Biology, 2012

In the past decade, there has been a resurgent interest in whether and how phenotypic plasticity might impact evolutionary processes. Of fundamental importance is how the environment influences individual phenotypic development while simultaneously selecting among phenotypic variants in a population. Conceptual and theoretical treatments of the evolutionary implications of plasticity are numerous, as are criticisms of the conclusions. As such, the time is ripe for empirical evidence to catch up with theoretical predictions. To this end, I provide a summary of eight hypotheses at the core of this issue, highlighting various approaches by which they can be tested. My goal is to provide practical guidance to those seeking to understand the complex ways by which phenotypic plasticity can influence evolutionary innovation and diversification.

The role of phenotypic plasticity in driving genetic

2003

Models of population divergence and speciation are often based on the assumption that differences between populations are due to genetic factors, and that phenotypic change is due to natural selection. It is equally plausible that some of the differences among populations are due to phenotypic plasticity. We use the metaphor of the adaptive landscape to review the role of phenotypic

Underappreciated Consequences of Phenotypic Plasticity for Ecological Speciation

International Journal of Ecology, 2012

Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However, some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects of plasticity on local adaptation (the first component of ecological speciation). Adaptive phenotypic plasticity can be a buffer against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation (the second component of ecological speciation). Plasticity can cause assortati...

A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation

An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.

The conceptual structure of evolutionary biology: A framework from phenotypic plasticity

European Journal of Ecology

In this review, I approach the role of phenotypic plasticity as a key aspect of the conceptual framework of evolutionary biology. The concept of phenotypic plasticity is related to other relevant concepts of contemporary research in evolutionary biology, such as assimilation, genetic accommodation and canalization, evolutionary robustness, evolvability, evolutionary capacitance and niche construction. Although not always adaptive, phenotypic plasticity can promote the integration of these concepts to represent some of the dynamics of evolution, which can be visualized through the use of a conceptual map. Although the use of conceptual maps is common in areas of knowledge such as psychology and education, their application in evolutionary biology can lead to a better understanding of the processes and conceptual interactions of the complex dynamics of evolution. The conceptual map I present here includes environmental variability and variation, phenotypic plasticity and natural selec...

Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity

Heredity, 2015

Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.

A neglected conceptual problem regarding phenotypic plasticity's role in adaptive evolution: The importance of genetic covariance and social drive

Evolution Letters, 2021

There is tantalizing evidence that phenotypic plasticity can buffer novel, adaptive genetic variants long enough to permit their evolutionary spread, and this process is often invoked in explanations for rapid adaptive evolution. However, the strength and generality of evidence for it is controversial. We identify a conceptual problem affecting this debate: recombination, segregation, and independent assortment are expected to quickly sever associations between genes controlling novel adaptations and genes contributing to trait plasticity that facilitates the novel adaptations by reducing their indirect fitness costs. To make clearer predictions about this role of plasticity in facilitating genetic adaptation, we describe a testable genetic mechanism that resolves the problem: genetic covariance between new adaptive variants and trait plasticity that facilitates their persistence within populations. We identify genetic architectures that might lead to such a covariance, including ge...

The evolution of phenotypic plasticity: genealogy of a debate in genetics

2015

The paper describes the context and the origin of a particular debate that concerns the evolution of phenotypic plasticity. In 1965, British biologist A. D. Bradshaw proposed a widely cited model intended to explain the evolution of norms of reaction, based on his studies of plant populations. Bradshaw’s model went beyond the notion of the “adaptive norm of reaction” discussed before him by Dobzhansky and Schmalhausen by suggesting that “plasticity” – the ability of a phenotype to be modified by the environment – should be genetically determined. To prove Bradshaw’s hypothesis, it became necessary for some authors to identify the pressures exerted by natural selection on phenotypic plasticity in particular traits, and thus to model its evolution. In this paper, I contrast two different views, based on quantitative genetic models, proposed in the mid-1980s: Russell Lande and Sara Via’s conception of phenotypic plasticity, which assumes that the evolution of plasticity is linked to the evolution of the plastic trait itself, and Samuel Scheiner and Richard Lyman’s view, which assumes that the evolution of plasticity is independent from the evolution of the trait. I show how the origin of this specific debate, and different assumptions about the evolution of phenotypic plasticity, depended on Bradshaw’s definition of plasticity and the context of quantitative genetics.