Synthetic lipopeptides incorporated in liposomes: In vitro stimulation of the proliferation of murine splenocytes and in vivo induction of an immune response against a peptide antigen (original) (raw)
Amphiphilic lipopeptides, such as Pam3CysAlaGly and Pam3CysSerSer, were synthesized and incorporated into liposomes, and their ability to induce the proliferation of BALB/c mouse splenocyte was tested in vitro. When compared to monophosphoryl lipid A (MPL) the following potency order was found: liposomal lipopeptides > liposomal MPL > free (emulsified) lipopeptides. These results strongly depend on the size of the vesicles used: a mitogenic effect was observed only with lipopeptides incorporated within vesicles of diameter < or = 100 nm while lipopeptides in larger vesicles (diameter approximately 300 nm) gave no response. This may be related to the necessity for the liposome-associated lipopeptides to be endocytosed to reach putative intracellular targets. As immunoadjuvanticity seems to be linked to B-lymphocyte activation, the lipopeptides represent attractive alternatives to MPL for the realization of completely synthetic liposome-based peptide vaccine formulations. This was borne out by showing that Pam3CysAlaGly and Pam3CysSerSer, when incorporated in small unilamellar vesicles carrying a covalently conjugated synthetic peptide of sequence IRGERA, corresponding to an epitope of the C-terminal region of histone H3, were able to induce a potent and long-lasting immune response.