Surface modification of low density silica and bridged polysilsesquioxane aerogels (original) (raw)

Abstract

ABSTRACT Silica and bridged polysilsesquioxane aerogels are low density materials that are attractive for applications such as, thermal insulation, porous separation media or catalyst supports, adsorbents. However, aerogels are notoriously weak and brittle making it difficult to handle and machine monoliths into desired forms. This prevents the development of many applications that would otherwise benefit from the use of the low density materials. We will describe our efforts to chemically modify and mechanically enhance silica-based aerogels using chemical vapor techniques without sacrificing their characteristic low densities. Monolithic silica and organically bridged polysilsesquioxane aerogels were prepared by sol-gel polymerization of the respective methoxysilane monomers followed by supercritical carbon dioxide drying of the gels. Reactive modification of the gels with volatile silylating compounds during and after the drying process and these effects on the mechanical properties and density of the aerogels will be described.

Kennard Wilson hasn't uploaded this paper.

Let Kennard know you want this paper to be uploaded.

Ask for this paper to be uploaded.