Statistics of Random Permutations and the Cryptanalysis of Periodic Block Ciphers (original) (raw)

A block cipher is intended to be computationally indistinguishable from a random permutation of appropriate domain and range. But what are the properties of a random permutation? By the aid of exponential and ordinary generating functions, we derive a series of collolaries of interest to the cryptographic community. These follow from the Strong Cycle Structure Theorem of permutations, and are useful in rendering rigorous two attacks on Keeloq, a block cipher in wide-spread use. These attacks formerly had heuristic approximations of their probability of success. Moreover, we delineate an attack against the (roughly) millionth-fold iteration of a random permutation. In particular, we create a distinguishing attack, whereby the iteration of a cipher a number of times equal to the product of the first eight primes is breakable, but merely one fewer round is considerably more secure. We then extend this to a key-recovery attack in a “Triple-DES” style construction, but using AES-256 and iterating the middle cipher (roughly) a million-fold. It is hoped that these results will showcase the utility of exponential and ordinary generating functions and will encourage their use in cryptanalytic research.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.