Epigenetics and human obesity (original) (raw)
Related papers
Recent developments on the role of epigenetics in obesity and metabolic disease
Clinical Epigenetics, 2015
The increased prevalence of obesity and related comorbidities is a major public health problem. While genetic factors undoubtedly play a role in determining individual susceptibility to weight gain and obesity, the identified genetic variants only explain part of the variation. This has led to growing interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions underlying the development of obesity and its associated comorbidities. Initial evidence in support of a role of epigenetics in obesity and type 2 diabetes mellitus (T2DM) was mainly provided by animal studies, which reported epigenetic changes in key metabolically important tissues following high-fat feeding and epigenetic differences between lean and obese animals and by human studies which showed epigenetic changes in obesity and T2DM candidate genes in obese/diabetic individuals. More recently, advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies (EWAS) have led to a rapid expansion of studies in human populations. These studies have also reported epigenetic differences between obese/T2DM adults and healthy controls and epigenetic changes in association with nutritional, weight loss, and exercise interventions. There is also increasing evidence from both human and animal studies that the relationship between perinatal nutritional exposures and later risk of obesity and T2DM may be mediated by epigenetic changes in the offspring. The aim of this review is to summarize the most recent developments in this rapidly moving field, with a particular focus on human EWAS and studies investigating the impact of nutritional and lifestyle factors (both pre-and postnatal) on the epigenome and their relationship to metabolic health outcomes. The difficulties in distinguishing consequence from causality in these studies and the critical role of animal models for testing causal relationships and providing insight into underlying mechanisms are also addressed. In summary, the area of epigenetics and metabolic health has seen rapid developments in a short space of time. While the outcomes to date are promising, studies are ongoing, and the next decade promises to be a time of productive research into the complex interactions between the genome, epigenome, and environment as they relate to metabolic disease.
Clinical Epigenetics, 2020
Background Metabolically healthy obesity (MHO) is a considerably controversial concept as it is considered a transitory condition towards the development of different pathologies (type 2 diabetes, insulin resistance, or cardiovascular disease). MHO is closely related to lifestyle and environmental factors. Epigenetics has become an essential biological tool to analyze the link between obesity and metabolic status. The aim of this study was to determine whether MHO status is conditioned by the DNA methylation (DNAm) of several genes related to lipid metabolism (lipoprotein lipase, retinoid X receptor alpha, liver X receptor, stearoyl-CoA desaturase, sterol regulatory element binding factor 1), and inflammation (LEP) in peripheral blood mononuclear cells (PBMCs) from 131 prepubertal subjects with MHO phenotype after lifestyle modifications with personalized Mediterranean diet (MedDiet) combined with a physical activity (PA) program. Results The DNAm of all studied genes were significa...
PEDIATRIC REVIEW Epigenetic changes in early life and future risk of obesity
The rapid increase in incidence of obesity over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environments also strongly influence the risk of developing obesity in later life. Initially, human studies showed that low birth weight was associated with an increased risk of obesity but increasingly there is evidence that overnutrition in the early life can also increase susceptibility to future obesity. These findings have now been replicated in animal models, which have shown that both maternal under-and overnutrition can induce persistent changes in gene expression and metabolism. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. In this review, we discuss the recent evidence that shows that early-life environment can induce altered epigenetic regulation leading to the induction of an altered phenotype. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of obesity opens the possibility that interventions, either through nutrition or specific drugs, may modify long-term obesity risk and combat this rapid rise in obesity.
The Impact of External Factors on the Epigenome: In Utero and over Lifetime
BioMed research international, 2016
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Prospects for Epigenetic Epidemiology
American Journal of Epidemiology, 2008
Epigenetic modification can mediate environmental influences on gene expression and can modulate the disease risk associated with genetic variation. Epigenetic analysis therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. The spatial and temporal variance in epigenetic profile is of particular relevance for developmental epidemiology and the study of aging, including the variable age at onset for many common diseases. This review serves as a general introduction to the topic by describing epigenetic mechanisms, with a focus on DNA methylation; genetic and environmental factors that influence DNA methylation; epigenetic influences on development, aging, and disease; and current methodology for measuring epigenetic profile. Methodological considerations for epidemiologic studies that seek to include epigenetic analysis are also discussed.
Epigenetics and child health: basic principles
Archives of Disease in Childhood, 2011
Epigenetic mechanisms are believed to play an important role in disease, development and ageing with early life representing a window of particular epigenomic plasticity. The knowledge upon which these claims are based is beginning to expand. This review summarises evidence pointing to the determinants of epigenetic patterns, their juxtaposition at the interface of the environment, their infl uence on gene function and the relevance of this information to child health.
Obesity: epigenetic regulation – recent observations
Biomolecular Concepts, 2015
Genetic and environmental factors, especially nutrition and lifestyle, have been discussed in the literature for their relevance to epidemic obesity. Gene-environment interactions may need to be understood for an improved understanding of the causes of obesity, and epigenetic mechanisms are of special importance. Consequences of epigenetic mechanisms seem to be particularly important during certain periods of life: prenatal, postnatal and intergenerational, transgenerational inheritance are discussed with relevance to obesity. This review focuses on nutrients, diet and habits influencing intergenerational, transgenerational, prenatal and postnatal epigenetics; on evidence of epigenetic modifiers in adulthood; and on animal models for the study of obesity.
EPIGENETICS: EFFECT OF ENVIRONMENTAL FACTORS ON HUMAN GENOME Review Article
International Journal of Pharmacy and Pharmaceutical Sciences, 2016
The physical and social behavior of an organism is influenced by its epigenetic modification, which involved histone modification, DNA methylation, non-coding RNA expression and chromatin remodeling. In contrast to genetic sequence, the epigenetic patterns differ from cell to cell and are dynamically being modified throughout the life span. Though prenatal period is the time for epigenetic modification and cell programming, there are growing evidence showing the influences of nutritional and environmental factors on gene expression. As epigenome is responsible for gene expression and phenotypic plasticity, its alterations have the same consequences as DNA mutations. Studies are going on to reveal out that the DNA is not the only destiny of life, instead by having a good environment and healthy lifestyle we are able to get and express better genes and can transfer them to our next generations. In this review the basic mechanism of epigenetic and the effects of environmental factors including dietary factors and early maternal care on human behavior and health status are discussed and in this regard we will examine the possibility of epigenetic mechanisms involved in chronic disease, and also, we will be hopeful to develop new medicines acting specifically on epigenome with better results.