The Ruminococcus albus pilA1-pilA2 locus: expression and putative role of two adjacent pil genes in pilus formation and bacterial adhesion to cellulose (original) (raw)

Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili

Microbiology (Reading, England), 2002

This study was aimed at characterizing a cell-surface 25 kDa glycoprotein (GP25) that was previously shown to be underproduced by a spontaneous adhesion-defective mutant D5 of Ruminococcus albus 20. An antiserum against wild-type strain 20 was adsorbed with the mutant D5 to enrich it in antibodies 'specific' to adhesion structures of R. albus 20. The resulting antiserum, called anti-Adh serum, blocked adhesion of R. albus 20 and reacted mainly with GP25 in bacterial and extracellular protein fractions of R. albus 20. The N-terminal sequence of purified GP25 was identical to that of CbpC, a 21 kDa cellulose-binding protein (CBP) of R. albus 8. The nucleotide sequence of the gp25 gene was determined by PCR and genomic walking procedures. The gp25 gene encoded a protein of 165 aa with a calculated molecular mass of 16940 Da that showed 72.9% identity with CbpC and presented homologies with type IV pilins of Gram-negative pathogenic bacteria. Negative-staining electron microscop...

Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins?

FEMS Microbiology Letters, 2000

An obligatory step in cellulose degradation by anaerobic bacteria is the adhesion of the bacterium to the polysaccharide. In many anaerobic bacteria the adhesion protein, and the enzymes required for extensive polysaccharide hydrolysis, are organized into a complex and interesting structure called the cellulosome. The Gram-positive anaerobe Ruminococcus albus also produces a cellulosome-like complex, but the bacterium appears to possess other mechanism(s) for adhesion to plant surfaces and genes encoding functions relevant to growth on cellulose are conditionally expressed, as suggested by a combination of functional proteomics, differential display reverse-transcriptase PCR, and mutational analysis. A novel form of cellulose-binding protein has been identified and shown to belong to the Pil-protein family, being most similar to the type 4 fimbrial proteins of Gram-negative, pathogenic bacteria. These studies have provided new insights into the adhesion of bacteria to plant surfaces, and call attention to the likely existence of genetically analogous adhesion determinants in both pathogenic and non-pathogenic bacteria.

Expression of Cellulosome Components and Type IV Pili within the Extracellular Proteome of Ruminococcus flavefaciens 007

PLoS ONE, 2013

Ruminococcus flavefaciens is an important fibre-degrading bacterium found in the mammalian gut. Cellulolytic strains from the bovine rumen have been shown to produce complex cellulosome structures that are associated with the cell surface. R. flavefaciens 007 is a highly cellulolytic strain whose ability to degrade dewaxed cotton, but not Avicel cellulose, was lost following initial isolation in the variant 007S. The ability was recovered after serial subculture to give the cotton-degrading strain 007C. This has allowed us to investigate the factors required for degradation of this particularly recalcitrant form of cellulose. The major proteins associated with the bacterial cell surface and with the culture supernatant were analyzed for R. flavefaciens 007S and 007C grown with cellobiose, xylan or Avicel cellulose as energy sources. Identification of the proteins was enabled by a draft genome sequence obtained for 007C. Among supernatant proteins a cellulosomal GH48 hydrolase, a rubrerthyrin-like protein and a protein with type IV pili N-terminal domain were the most strongly up-regulated in 007C cultures grown on Avicel compared with cellobiose. Strain 007S also showed substrate-related changes, but supernatant expression of the Pil protein and rubrerythrin in particular were markedly lower in 007S than in 007C during growth on Avicel. This study provides new information on the extracellular proteome of R. flavefaciens and its regulation in response to different growth substrates. Furthermore it suggests that the cotton cellulose non-degrading strain (007S) has altered regulation of multiple proteins that may be required for breakdown of cotton cellulose. One of these, the type IV pilus was previously shown to play a role in adhesion to cellulose in R. albus, and a related pilin protein was identified here for the first time as a major extracellular protein in R. flavefaciens.

A Novel Cell Surface-Anchored Cellulose-Binding Protein Encoded by the sca Gene Cluster of Ruminococcus flavefaciens

Journal of Bacteriology, 2007

Ruminococcus flavefaciens produces a cellulosomal enzyme complex, based on the structural proteins ScaA, -B, and -C, that was recently shown to attach to the bacterial cell surface via the wall-anchored protein ScaE. ScaA, -B, -C, and -E are all cohesin-bearing proteins encoded by linked genes in the sca cluster. The product of an unknown open reading frame within the sca cluster, herein designated CttA, is similar in sequence at its C terminus to the corresponding region of ScaB, which contains an X module together with a dockerin sequence. The ScaB-XDoc dyad was shown previously to interact tenaciously with the cohesin of ScaE. Likewise, avid binding was confirmed between purified recombinant fragments of the CttA-XDoc dyad and the ScaE cohesin. In addition, the N-terminal regions of CttA were shown to bind to cellulose, thus suggesting that CttA is a cell wall-anchored, cellulose-binding protein. Proteomic analysis showed that the native CttA protein (ϳ130 kDa) corresponds to one of the three most abundant polypeptides binding tightly to insoluble cellulose in cellulose-grown R. flavefaciens 17 cultures. Interestingly, this protein was also detected among cellulose-bound proteins in the related strain R. flavefaciens 007C but not in a mutant derivative, 007S, that was previously shown to have lost the ability to grow on dewaxed cotton fibers. In R. flavefaciens, the presence of CttA on the cell surface is likely to provide an important mechanism for substrate binding, perhaps compensating for the absence of an identified cellulose-binding module in the major cellulosomal scaffolding proteins of this species.

Unconventional Mode of Attachment of the Ruminococcus flavefaciens Cellulosome to the Cell Surface

Journal of Bacteriology, 2005

Sequence extension of the scaffoldin gene cluster from Ruminococcus flavefaciens revealed a new gene (scaE) that encodes a protein with an N-terminal cohesin domain and a C terminus with a typical gram-positive anchoring signal for sortase-mediated attachment to the bacterial cell wall. The recombinant cohesin of ScaE was recovered after expression in Escherichia coli and was shown to bind to the C-terminal domain of the cellulosomal structural protein ScaB, as well as to three unknown polypeptides derived from native cellulosebound Ruminococcus flavefaciens protein extracts. The ScaB C terminus includes a cryptic dockerin domain that is unusual in its sequence, and considerably larger than conventional dockerins. The ScaB dockerin binds to ScaE, suggesting that this interaction occurs through a novel cohesin-dockerin pairing. The novel ScaB dockerin was expressed as a xylanase fusion protein, which was shown to bind tenaciously and selectively to a recombinant form of the ScaE cohesin. Thus, ScaE appears to play a role in anchoring the cellulosomal complex to the bacterial cell envelope via its interaction with ScaB. This sortase-mediated mechanism for covalent cell-wall anchoring of the cellulosome in R. flavefaciens differs from those reported thus far for any other cellulosome system.

Ruminococcus albus 8 Mutants Defective in Cellulose Degradation Are Deficient in Two Processive Endocellulases, Cel48A and Cel9B, Both of Which Possess a Novel Modular Architecture

Journal of Bacteriology, 2004

The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B 2 (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.

The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein

2003

A scaffoldin gene cluster was identified in the mesophilic cellulolytic anaerobe Acetivibrio cellulolyticus. The previously described scaffoldin gene, cipV, encodes an N-terminal family 9 glycoside hydrolase, a family 3b cellulose-binding domain, seven cohesin domains, and a C-terminal dockerin. The gene immediately downstream of cipV was sequenced and designated scaB. The protein encoded by this gene has 942 amino acid residues and a calculated molecular weight of 100,358 and includes an N-terminal signal peptide, four type II cohesions, and a C-terminal dockerin. ScaB cohesins 1 and 2 are very closely linked. Similar, but not identical, 39-residue Thr-rich linker segments separate cohesin 2 from cohesin 3 and cohesin 3 from cohesin 4, and an 84-residue Thr-rich linker connects the fourth cohesin to a C-terminal dockerin. The scaC gene downstream of scaB codes for a 1,237-residue polypeptide that includes a signal peptide, three cohesins, and a C-terminal S-layer homology (SLH) module. A long, ca. 550-residue linker separates the third cohesin and the SLH module of ScaC and is characterized by an 18-residue Pro-Thr-Ala-Ser-rich segment that is repeated 27 times. The calculated molecular weight of the mature ScaC polypeptide (excluding the signal peptide) is 124,162. The presence of the cohesins and the conserved SLH module implies that ScaC acts as an anchoring protein. The ScaC cohesins are on a separate branch of the phylogenetic tree that is close to, but distinct from, the type I cohesins. Affinity blotting with representative recombinant probes revealed the following specific intermodular interactions: (i) an expressed CipV cohesin binds selectively to an enzyme-borne dockerin, (ii) a representative ScaB cohesin binds to the CipV band of the cell-free supernatant fraction, and (iii) a ScaC cohesin binds to the ScaB dockerin. The experimental evidence thus indicates that CipV acts as a primary (enzyme-recognizing) scaffoldin, and the protein was also designated ScaA. In addition, ScaB is thought to assume the role of an adaptor protein, which connects the primary scaffoldin (ScaA) to the cohesin-containing anchoring scaffoldin (ScaC). The cellulosome system of A. cellulolyticus thus appears to exhibit a special type of organization that reflects the function of the ScaB adaptor protein. The intercalation of three multiple cohesin-containing scaffoldins results in marked amplification of the number of enzyme subunits per cellulosome unit. At least 96 enzymes can apparently be incorporated into an individual A. cellulolyticus cellulosome. The role of such amplified enzyme incorporation and the resultant proximity of the enzymes within the cellulosome complex presumably contribute to the enhanced synergistic action and overall efficient digestion of recalcitrant forms of cellulose. Comparison of the emerging organization of the A. cellulolyticus cellulosome with the organizations in other cellulolytic bacteria revealed the diversity of the supramolecular architecture.

Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose

The EMBO Journal, 1996

The crystal structure of a family-III cellulose-binding domain (CBD) from the cellulosomal scaffoldin subunit of Clostridium thermocellum has been determined at 1.75 A resolution. The protein forms a nine-stranded P sandwich with a jelly roll topology and binds a calcium ion. Conserved, surface-exposed residues map into two defined surfaces located on opposite sides of the molecule. One of these faces is dominated by a planar linear strip of aromatic and polar residues which are proposed to interact with crystalline cellulose. The other conserved residues are contained in a shallow groove, the function of which is currently unknown, and which has not been observed previously in other families of CBDs. On the basis of modeling studies combined with comparisons of recently determined NMR structures for other CBDs, a general model for the binding of CBDs to cellulose is presented. Although the proposed binding of the CBD to cellulose is essentially a surface interaction, specific types and combinations of amino acids appear to interact selectively with glucose moieties positioned on three adjacent chains of the cellulose surface. The major interaction is characterized by the planar strip of aromatic residues, which align along one of the chains. In addition, polar amino acid residues are proposed to anchor the CBD molecule to two other adjacent chains of crystalline cellulose.

The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein

Journal of Bacteriology, 2003

A scaffoldin gene cluster was identified in the mesophilic cellulolytic anaerobe Acetivibrio cellulolyticus. The previously described scaffoldin gene, cipV, encodes an N-terminal family 9 glycoside hydrolase, a family 3b cellulose-binding domain, seven cohesin domains, and a C-terminal dockerin. The gene immediately downstream of cipV was sequenced and designated scaB. The protein encoded by this gene has 942 amino acid residues and a calculated molecular weight of 100,358 and includes an N-terminal signal peptide, four type II cohesions, and a C-terminal dockerin. ScaB cohesins 1 and 2 are very closely linked. Similar, but not identical, 39-residue Thr-rich linker segments separate cohesin 2 from cohesin 3 and cohesin 3 from cohesin 4, and an 84-residue Thr-rich linker connects the fourth cohesin to a C-terminal dockerin. The scaC gene downstream of scaB codes for a 1,237-residue polypeptide that includes a signal peptide, three cohesins, and a C-terminal S-layer homology (SLH) module. A long, ca. 550-residue linker separates the third cohesin and the SLH module of ScaC and is characterized by an 18-residue Pro-Thr-Ala-Ser-rich segment that is repeated 27 times. The calculated molecular weight of the mature ScaC polypeptide (excluding the signal peptide) is 124,162. The presence of the cohesins and the conserved SLH module implies that ScaC acts as an anchoring protein. The ScaC cohesins are on a separate branch of the phylogenetic tree that is close to, but distinct from, the type I cohesins. Affinity blotting with representative recombinant probes revealed the following specific intermodular interactions: (i) an expressed CipV cohesin binds selectively to an enzyme-borne dockerin, (ii) a representative ScaB cohesin binds to the CipV band of the cell-free supernatant fraction, and (iii) a ScaC cohesin binds to the ScaB dockerin. The experimental evidence thus indicates that CipV acts as a primary (enzyme-recognizing) scaffoldin, and the protein was also designated ScaA. In addition, ScaB is thought to assume the role of an adaptor protein, which connects the primary scaffoldin (ScaA) to the cohesin-containing anchoring scaffoldin (ScaC). The cellulosome system of A. cellulolyticus thus appears to exhibit a special type of organization that reflects the function of the ScaB adaptor protein. The intercalation of three multiple cohesin-containing scaffoldins results in marked amplification of the number of enzyme subunits per cellulosome unit. At least 96 enzymes can apparently be incorporated into an individual A. cellulolyticus cellulosome. The role of such amplified enzyme incorporation and the resultant proximity of the enzymes within the cellulosome complex presumably contribute to the enhanced synergistic action and overall efficient digestion of recalcitrant forms of cellulose. Comparison of the emerging organization of the A. cellulolyticus cellulosome with the organizations in other cellulolytic bacteria revealed the diversity of the supramolecular architecture.