Hausdorff Metric Based Vector Quantization of Binary Images (original) (raw)

Optimal multidimensional quantization for pattern recognition, in

2002

In non-parametric pattern recognition, the probability density function is approximated by means of many parameters, each one for a density value in a small hyper-rectangular volume of the space. The hyper-rectangles are determined by appropriately quantizing the range of each variable. Optimal quantization determines a compact and efficient represen-tation of the probability density of data by optimizing a global quantizer performance measure. The measure used here is a weighted combination of average log likelihood, entropy and correct classification probability. In multi-dimensions, we study a grid based quantization technique. Smoothing is an important aspect of optimal quantization because it affects the generalization ability of the quantized density estimates. We use a fast generalized k nearest neighbor smoothing algorithm. We illustrate the effectiveness of optimal quantization on a set of not very well separated Gaussian mixture models, as compared to the expectation maxim...

A review of learning vector quantization classifiers

2015

In this work we present a review of the state of the art of Learning Vector Quantization (LVQ) classifiers. A taxonomy is proposed which integrates the most relevant LVQ approaches to date. The main concepts associated with modern LVQ approaches are defined. A comparison is made among eleven LVQ classifiers using one real-world and two artificial datasets.

Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-scale Image Retrieval

2012

Abstract This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task.