Towards deterministic equations for Levy walks: The fractional material derivative (original) (raw)

Generalized Continuous Time Random Walks, Master Equations, and Fractional Fokker--Planck Equations

Bruce Henry

SIAM Journal on Applied Mathematics, 2015

View PDFchevron_right

Langevin formulation of a subdiffusive continuous-time random walk in physical time

Andrea Cairoli

Physical Review E, 2015

View PDFchevron_right

Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion

Ralf Metzler

Encyclopedia of Complexity and Systems Science, 2009

View PDFchevron_right

From continuous time random walks to the fractional Fokker-Planck equation

Ralf Metzler

Physical Review E, 2000

View PDFchevron_right

Random Time-Scale Invariant Diffusion and Transport Coefficients

Ralf Metzler

Physical Review Letters, 2008

View PDFchevron_right

Fractional diffusion and Levy stable processes

Bruce West

Physical Review E, 1997

View PDFchevron_right

Finite-energy Lévy-type motion through heterogeneous ensemble of Brownian particles

gianni pagnini

Journal of Physics A: Mathematical and Theoretical

View PDFchevron_right

Transport properties of Lévy walks: An analysis in terms of multistate processes

Marco Lenci, Giampaolo Cristadoro

EPL (Europhysics Letters), 2014

View PDFchevron_right

Lévy flight with absorption: A model for diffusing diffusivity with long tails

K.L. Sebastian

Physical review. E, 2017

View PDFchevron_right

Fractional generalization of Fick’s law: derivation through Continuous-Time Random Walks

Raul Edwin Zavala Sanchez

View PDFchevron_right

Drift-controlled anomalous diffusion: A solvable Gaussian model

Rosario N Mantegna

Physical Review E, 2000

View PDFchevron_right

The random walk's guide to anomalous diffusion: a fractional dynamics approach

Ralf Metzler

Physics Reports, 2000

View PDFchevron_right

Fractional diffusion Processes: Probability Distributions and Continuous Time Random Walk

Rudolf Gorenflo

Lecture Notes in Physics, 2003

View PDFchevron_right

Universal fluctuations in subdiffusive transport

Igor Goychuk

View PDFchevron_right

Operator Lévy motion and multiscaling anomalous diffusion

Mark Meerschaert

Physical review. E, Statistical, nonlinear, and soft matter physics, 2001

View PDFchevron_right

Simulation of the continuous time random walk of the space-fractional diffusion equations

Entsar Abdelrehim, Rudolf Gorenflo

Journal of Computational and Applied Mathematics, 2008

View PDFchevron_right

Fractional diffusion processes: Probability distribution and continuous time random walk

Rudolf Gorenflo

2007

View PDFchevron_right

Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion

Francesco Mainardi

Journal of Mathematical Sciences, 2006

View PDFchevron_right

Brownian motion and anomalous diffusion revisited via a fractional Langevin equation

Antonio Mura

2010

View PDFchevron_right

Lévy Flight Superdiffusion: An Introduction

Bernardo Spagnolo

International Journal of Bifurcation and Chaos, 2008

View PDFchevron_right

Temporal Diffusion: From Microscopic Dynamics to Generalised Fokker–Planck and Fractional Equations

Jean Pierre Boon

Journal of Statistical Physics

View PDFchevron_right

Random time averaged diffusivities for Lévy walks

Eli Barkai

The European Physical Journal B, 2013

View PDFchevron_right

Discrete random walk models for space–time fractional diffusion

gianni pagnini

Chemical Physics, 2002

View PDFchevron_right

From power laws to fractional diffusion: the direct way

Rudolf Gorenflo

2007

View PDFchevron_right

Transforming Gaussian diffusion into fractional a generalized law of large numbers approach

E. Barkai

Arxiv preprint cond-mat/0001081, 2000

View PDFchevron_right

Fractional Lévy stable motion can model subdiffusive dynamics

A. Weron

Physical Review E, 2010

View PDFchevron_right

Memory-induced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model

Katja Lindenberg

Physical Review E, 2010

View PDFchevron_right