Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites (original) (raw)
Abstract
This work is the continuation and refi nement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization 1, 2 . In this study, nanocomposites based on poly(ethylene terephthalate) with expanded graphite were compared to those with functionalized graphite sheets (GO). The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confi rmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofi ller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG) and matrix.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (34)
- Paszkiewicz, S., Szymczyk, A., Špitalský, Z., Soccio, M., Mosnáček, J., Ezquerra, T.A. & Rosłaniec, Z. (2012). Infl uence of EG on electrical conductivity of PET/EG nanocomposites prepared by in situ polymerization. J. Polym. Sci.: Part B: Polym. Phys. 50, 1645-1652. DOI:10.1002/polb.23176.
- Paszkiewicz, S., Szymczyk, A., Špitalský, Z., Mosnáček, J.
- & Rosłaniec, Z. (2012). Morphology and Thermal Properties of Expanded Graphite (EG)/Poly(ethylene terephthalate) (PET) Nanocomposites. CHEMIK 66(1), 21-30.
- Mark, H.F., Bikales, N.M., Overberger, C.G. & Menges, G. (1988). Encyclopedia of polymer science and engineering (2nd ed.). USA: Wiley Interscience.
- Bhimaraj, P., Burris, D.L., Action, J., Sawyer, W.G., Toney, C.G., Siegel, R.W. & Schadel, L.S. (2005). Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly(ethylene terephthalate) composites, Wear 258 (9), 1437-1443. DOI: 10.1016/j.wear.2004.09.077.
- Krishnamoorti, R. & Vaia, R.A. (2001). Polymer nanocom- posites, synthesis, characterization and modeling. ACS symposium series, Washington DC, American Chemical Society.
- Jain, S., Goossens, H., Duin, M. & Lemstra, P. (2000). Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polym. 46, 8805-8818. DOI: 10.1016/j.polymer.2004.12.062.
- Li, Z., Luo, G., Wie, F. & Huang, Y. (2006). Microstruc- ture of carbon nanotubes/PET conductive composites fi bers and their properties. Comp. Sci. Techn. 66, 1022-1029. DOI: 10.1016/j.compscitech.2005.08.006.
- Zheng, G., Wu, J., Wang, W. & Pan, C. (2004). Character- izations of expanded graphite/polymer composites prepared by in situ polymerization Carbon 42, 2839-2847. DOI: 10.1016/j. carbon.2004.06.029.
- Szymczyk, A., Paszkiewicz, S. & Roslaniec, Z. (2013).
- Infl uence of intercalated organoclay on the phase structure and physical properties of PTT-PTMO block copolymers. Polym. Bull. 70, 1575-1590. DOI: 10.1007/s00289-012-0859-y.
- Hernández, J.J., García-Gutiérrez, M.C., Nogales, A., Rueda, D.R., Kwiatkowska, M., Szymczyk, A., Roslaniec, Z., Concheso, A., Guinea, I. & Ezquerra, T.A. (2009). Infl uence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Comp. Sci. Tech. 69, 1867-1872. DOI: 10.1016/j.compscitech.2009.04.002.
- Szymczyk, A., Roslaniec, Z., Zenker, M., García-Gutiérrez, M.C., Hernández, J.J., Rueda, D.R., Nogales, A. & Ezquerra, T.A. (2011). Preparation and characterization of nanocomposites Table 2. Transition temperatures and the degree of crystallinity of PET/EG and PET/GO nanocomposites Brought to you by | Biblioteka Glówna Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie Authenticated Download Date | 12/12/14 11:40 AM based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate). eXPR. Polym. Lett. 5(11), 977-995. DOI: 10.3144/expresspolymlett.2011.96.
- Stankovich, S., Dikin, D.A., G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D, Nguyen, S.T. & Ruoff, R.S. (2006). Graphene-based composite materials, Nature 442 (7100), 282-286. DOI:10.1038/nature04969.
- Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T, Aksay, I.A., Prud'Homme, R.K. & Brinson, L.C. (2008). Functionalized graphene sheets for polymer nanocomposites, Natur. Nanotech. 3(6), 327-331. DOI: 10.1038/nnano.2008.96.
- Lee, C., Wei, X., Kysar, J.W. & Hone, J. (2008). Mea- surement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385-388. DOI: 10.1126/ science.1157996.
- Kim, I.H. & Jeong, Y.G. (2010). Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity, J. Polym. Sci. Part B: Polym. Phys. 48(8), 850-858. DOI: 10.1002/polb.21956.
- Zhang, M., Li, D.J., Wu, D.F., Yan, C.H., Lu, P. & Qiu, G.M. (2008). Poly(ethylene terephthalate)/expanded graphite conductive composites: structure, properties, and transport behavior, J. Appl. Polym. Sci. 108 (3), 1482-1489. DOI: 10.1002/ app.27745.
- Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Wang, J.W., Lu, Z.H., Ji, G.Y. & Yu, Z.Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polym. 51(5), 1191-1196. DOI: 10.1016/j. polymer.2010.01.027.
- Szymczyk, A. (2009). Structure and properties of new polyester elastomers composed of poly(trimethylene terephthal- ate) and poly(ethylene oxide). Eur. Polym. J. 45, 2653-2664. DOI: 10.1016/j.eurpolymj.2009.05.032.
- Anand, K.A., Agarwal, U.S. & Joseph, R. (2007). Carbon nanotubes-reinforced PET nanocomposite by melt- compounding. J. Appl. Polym. Sci. 104(5), 3090-3095. DOI :10.1002/app.25674.
- Wunderlich, B. (1980). Macromolecular Physics (3 rd Ed.).
- Kim, J.Y., Han, S.I. & Hong, S. (2008). Effect of Modi- fi ed Carbon Nanotube on the Properties of Aromatic Poly- ester Nanocomposites. Polym. 49, 3335-3345. DOI:10.1016/j. polymer.2008.05.024.
- Spiros, T., Drakonakis, V., Mouzakis, D.E., Fischer, D.
- & Gregoriou, V.G. (2006). Effect of Carboxy-Functionalized Multiwall Nanotubes (MWNT-COOH) on the Crystallization and Chain Conformations of Poly(ethylene terephthalate) PET in PET-MWNT Nanocomposites. Macromol. 39, 9150-9156. DOI: 10.1021/ma0613584.
- Godovsky, Y.K., Slonimsky, G.L. & Garbar, N.M. (1972). Effect of molecular weight on the crystallization and morphology of poly(ethylene oxide) fractions. J. Polym. Sci.: Part C 38(1), 1-21. DOI: 10.1002/polc.5070380103.
- Lopez, L.C. & Wilkes, G.L. (1988). Crystallization kine- tics of poly(p-phenylene sulphide): effect of molecular weight. Polym. 29, 106-113. DOI: 10.1016/0032-3861(88)90207-8.
- Krikorian, V. & Kochan, D.J. (2005). Crystallization Be- havior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromol. 38(15), 6520-6527. DOI: 10.1021/ma050739z.
- Hu, X., An, H., Li, Z. &Yang, L. (2009). Origin of Car- bon Nanotubes Induced Poly(l-Lactide) Crystallization: Surface Induced Conformational Order. Macromol. 42(8), 3215-3218. DOI: 10.1021/ma802758k.
- Zhang, J., Duan, Y., Sato, H., Tsuji, H., Noda, I., Yan, S.K. & Ozaki, Y. (2005). Crystal Modifi cations and Thermal Behavior of Poly (L -lactic acid) Revealed by Infrared Spectros- copy. Macromol. 38(19), 8012-8021. DOI: 10.1021/ma051232r.
- Kim, J.Y. & Kim, S.H. (2012). Nanocomposites -New Trends and Developments, InTech, Retrieved October 2012, from InTech DTP team. http://www.intechopen.com/books/nano- composites-new-trends-anddevelopments. DOI: 10.5772/50413.
- Kim, J.Y., Han, S.I. & Kim, S.H. (2007). Crystallization Behavior and Mechanical Properties of Poly(ethylene-2,6- naphthalate)/Multiwall Carbon Nanotube Nanocomposites. Polym. Eng. Sci. 47, 1715-1723. DOI:10.1002/pen.20789.
- Kim, J.Y. (2009). The Effect of Carbon Nanotube on the Physical Properties of Poly(butylene terephthalate) Nano- composite by Simple Melt Blending. J. Appl. Polym. Sci.112(5), 2589-2600. DOI: 10.1002/app.29560.
- Kim, J.Y., Ki, D.K. & Kim, S.H. (2009). Effect of Modi- fi ed Carbon Nanotube on Physical Properties of Thermotropic Liquid Crystal Polyester Nanocomposites. Eur. Polym. J. 45(2), 316-324. DOI: 10.1016/j.eurpolymj.2008.10.043.