Systems Biology Analysis of Brucella Infected Peyer's Patch Reveals Rapid Invasion with Modest Transient Perturbations of the Host Transcriptome (original) (raw)
Related papers
Microbes and Infection, 2012
Brucella spp. infect hosts primarily by adhering and penetrating mucosal surfaces, however the initial molecular phenomena of this host:pathogen interaction remain poorly understood. We hypothesized that characterizing the epithelial-like human HeLa cell line molecular response to wild type Brucella melitensis infection would help to understand the role of the mucosal epithelium at the onset of the Brucella pathogenesis. RNA samples from B. melitensis-infected HeLa cells were taken at 4 and 12 h of infection and hybridized in a cDNA microarray. The analysis using a dynamic Bayesian network modeling approach (DBN) identified several pathways, biological processes, cellular components and molecular functions altered due to infection at 4 h p.i., but almost none at 12 h p.i. The in silico modeling results were experimentally tested by knocking down the expression of MAPK1 by siRNA technology. MAPK1-siRNA transfected cell cultures decreased the internalization and impaired the intracellular replication of the pathogen in HeLa cells after 4 h p.i. DBN analysis provides important insights into the role of the epithelial cells response to Brucella infection and guide research to novel mechanisms identification.
Frontiers in microbiology, 2017
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly&qu...
A gene expression map of host immune response in human brucellosis
2022
ABSTRACTBrucellosis is a common zoonotic disease caused by intracellular pathogens of the genus Brucella. Brucella infects macrophages and evades clearance mechanisms, which results in chronic parasitism. Herein, we studied the molecular changes that take place in human brucellosis both in vitro and in vivo. RNA sequencing was performed in primary human macrophages (Μφ) and polymorphonuclear neutrophils (PMNs) infected with clinical strains of B. melitensis. We observed a downregulation in the expression of genes involved in host response, such as TNF signaling, IL-1β production and phagosome formation in Μφ, and phosphatidylinositol signaling and TNF signaling in PMNs, being in line with the ability of the pathogen to survive within phagocytes. Further transcriptomic analysis of isolated peripheral blood mononuclear cells (PBMCs) and PMNs from patients with acute brucellosis before treatment initiation and after successful treatment revealed a positive correlation of the molecular ...
FEMS Immunology & Medical Microbiology, 2012
In spite of the frequent acquisition of Brucella infection by the oral route in humans, the interaction of the bacterium with cells of the intestinal mucosa has been poorly studied. Here, we show that different Brucella species can invade human colonic epithelial cell lines (Caco-2 and HT-29), in which only smooth species can replicate efficiently. Infection with smooth strains did not produce a significant cytotoxicity, while the rough strain RB51 was more cytotoxic. Infection of Caco-2 cells or HT-29 cells with either smooth or rough strains of Brucella did not result in an increased secretion of TNF-a, IL-1b, MCP-1, IL-10 or TGF-b as compared with uninfected controls, whereas all the infections induced the secretion of IL-8 and CCL20 by both cell types. The MCP-1 response to flagellin from Salmonella typhimurium was similar in Brucella-infected or uninfected cells, ruling out a bacterial inhibitory mechanism as a reason for the weak proinflammatory response. Infection did not modify ICAM-1 expression levels in Caco-2 cells, but increased them in HT-29 cells. These results suggest that Brucella induces only a weak proinflammatory response in gut epithelial cells, but produces a significant CCL20 secretion. The latter may be important for bacterial dissemination given the known ability of Brucella to survive in dendritic cells.
Brucella regulators: self-control in a hostile environment
Trends in Microbiology, 2009
Brucella is an important zoonotic pathogen for which no human vaccine exists. In an infected host, Brucella resides in macrophages but must coordinate expression of multiple virulence factors for successful cell entry and trafficking to acquire this replicative niche. Brucella responds to environmental signals to regulate virulence strategies that circumvent or blunt the host immune response. The Brucella quorum sensing system is a nexus of control for several Brucella virulence factors including flagellar genes and the type IV secretion system. Other sensory transduction systems, such as BvrRS and the newly described LOV-HK, sense environmental factors to control virulence. Here, we examine the contributions of various regulatory systems to Brucella virulence.
Experimental Biology and Medicine, 2009
Brucella spp. establish an intracellular replicative niche in macrophages, while macrophages attempt to eliminate the bacteria by innate defense mechanisms. Brucella spp. possess similar genomes yet exhibit different macrophage infections. Few B. melitensis and B. neotomae enter macrophages with intracellular adaptation occurring over 4-8 hr. Conversely, B. ovis are readily ingested by macrophages and exhibit a persistent plateau of infection. Evaluating early macrophage interaction with Brucella spp. allows discovery of host entry and intracellular translocation mechanisms. Microarray analysis of macrophage transcriptional response following a 4 hr infection by different Brucella spp. revealed common macrophage genes altered in expression compared to uninfected macrophages. Macrophage infection with three different Brucella spp. provokes a common innate immune theme with increased transcript levels of chemokines and defense response genes and decreased transcript levels of GTPase signaling and cytoskeletal function that may affect trafficking of Brucella containing vesicles. For example, transcript levels of genes associated with chemotaxis (IL-1b, MIP-1a), cytokine regulation (Socs3) and defense (Fas, Tnf) were increased, while transcript levels of genes associated with vesicular trafficking (Rab3d) and lysosomal associated enzymes (prosaposin) were decreased. Genes with altered macrophage transcript levels among Brucella spp.
PLoS ONE, 2007
Background. To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. Methodology/Principal Findings. Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-a-induction was TLR4-and TLR2dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice. Conclusion/Significance. We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections.
Microbial Pathogenesis, 2011
Brucella spp. infect hosts primarily by adhering and penetrating mucosal surfaces; however the initial molecular phenomena of this host:pathogen interaction remain poorly understood. Using cDNA microarray analysis, we characterized the transcriptional profile of the intracellular pathogen Brucella melitensis at 4 h (adaptational period) and 12 h (replicative phase) following HeLa cells infection. The intracellular pathogen transcriptome was determined using initially enriched and then amplified B. melitensis RNA from total RNA of B. melitensis-infected HeLa cells. Analysis of microarray results identified 161 and 115 pathogen genes differentially expressed at 4 and 12 h p.i., respectively. In concordance with phenotypic studies, most of the genes expressed were involved in pathogen growth and metabolism, and were down-regulated at the earliest time point (78%), but up-regulated at 12 h p.i. (75%). Further characterization of specific genes identified in this study will elucidate biological processes and pathways to help understand how both host and Brucella interact during the early infectious process to the eventual benefit of the pathogen and to the detriment of the naïve host.