Exploiting tag similarities to discover synonyms and homonyms in folksonomies (original) (raw)

Abstract

Tag-based systems are widely available, thanks to their intrinsic advantages, such as self-organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag-based recommendation systems. In this paper, we propose a methodology for the analysis of tag-based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. journal special issues (e.g., ACM RecSys ¶ or UMAP || conference, or SASWeb workshops series, ** ACM Transactions on Intelligent Systems and Technology, and so on) are devoted to them.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (39)

  1. Dattolo A, Ferrara F, Tasso C. On social semantic relations for recommending tags and resources using folksonomies. In Human-computer Systems Interaction: Backgrounds and Applications 2, Vol. 98, Advances in Intelligent and Soft Computing. Springer: Berlin / Heidelberg, 2011; 315-332.
  2. Vander Wal T. Folksonomy Definition and Wikipedia, November 2005. Available from: http://www.vanderwal.net/ random/entrysel.php?blog=1750 [last accessed 05 August 2012].
  3. Shirky C. Ontology is overrated: categories, links, and tags, 2005. Available from: http://www.shirky.com/writings/ ontology_overrated.html [last accessed 05 August 2012].
  4. Kroski E. The hive mind: folksonomies and user-based tagging, December 2005. Available from: http://infotangle. blogsome.com/2005/12/07/the-hive-mind-folksonomies-and-user-based-tagging/ [last accessed 05 August 2012].
  5. Vander Wal T. Folksonomy, 2007. Available from: http://vanderwal.net/folksonomy.html [last accessed 05 August 2012].
  6. Jannach D, Zanker M, Felfering A, Friedrich G. Recommender Systems an Introduction. Cambridge University Press: Leiden, 2011.
  7. Ricci F, Rokach L, Shapira B, Kantor PB. Recommender Systems Handbook. Springer: New York; London, 2011.
  8. Dattolo A, Tomasi F, Vitali F. Towards disambiguating social tagging systems. In Handbook of Research on Web 2.0, 3.0 and x.0: Technologies, Business, and Social Applications, Murugesan S (ed.). IGI Global: Hershey, PA, 2010; 349-369.
  9. Golder S, Huberman BA. The structure of collaborative tagging systems. Journal of Information Science 2006; 32(2):198-208.
  10. Gemmell J, Ramezani M, Schimoler T, Christiansen L, Mobasher B. The impact of ambiguity and redundancy on tag recommendation in folksonomies. Proceedings of the Third ACM Conference on Recommender Systems (RECSYS '09), New York, NY, USA, 2009; 45-52.
  11. Dattolo A, Ferrara F, Tasso C. Supporting personalized user concept spaces and recommendations for a publication sharing system. In 17th International Conference, UMAP 2009, formerly UM and AH, Vol. 5535, Lecture Notes in Computer Science. Springer, 2009; 325-330.
  12. Schmitz C, Hotho A, Jäschke R, Stumme G. Mining association rules in folksonomies. In Proceedings of the IFCS 2006, Studies in Classification, Data Analysis, and Knowledge Organization. Springer: Berlin/Heidelberg, 2006; 261-270.
  13. Cattuto C, Benz D, Hotho A, Stumme G. Semantic grounding of tag relatedness in social bookmarking systems. In ISWC 2008, Vol. 5318, LNCS. Springer, 2008; 615-631.
  14. Ignacio Fernández-Tobías AB, Cantador I. cTag: semantic contextualisation of social tags. In Proceedings of the International Workshop on Adaptation in Social and Semantic Web (SASWeb 2011), Vol. 730, Cena F, Dattolo A, De Luca EW, Lops P, Plumbaum T, Vassileva J (eds). CEUR: RWTH, Aachen, 2011; 40-49.
  15. Lambiotte R, Ausloos M. Collaborative tagging as a tripartite network. In Computational Science ICCS 2006, Vol. 3993, LNCS. Springer: Berlin / Heidelberg, 2006; 1114-1117.
  16. Mika P. Ontologies are us: a unified model of social networks and semantics. In ISWC 2005, LNCS. Springer: Amsterdam, The Netherlands, 2005; 522-536.
  17. Angeletou S. Semantic enrichment of folksonomy tagspaces. In ISWC 2008, Vol. 5318, LNCS. Springer: Berlin, Heidelberg, 2005; 889-894.
  18. man Au Yeung C, Gibbins N, Shadbolt N. Understanding the semantics of ambiguous tags in folksonomies. Proceedings of the International Workshop on Emergent Semantics and Ontology Evolution (ESOE2007) at ISWC/ASWC2007, Busan, South Korea, November, 2007; 108-121.
  19. man Au Yeung C, Gibbins N, Shadbolt N. Contextualising tags in collaborative tagging systems. Proceedings of the Twentieth ACM Conference on Hypertext and Hypermedia (HT '09), New York, NY, USA, 2009; 251-260.
  20. Begelman G, Keller P, Smadja F. Automated tag clustering: improving search and exploration in the tag space. Proceedings of the Collaborative Web Tagging Workshop at WWW2006, Edinburgh, Scotland, 2006; 15-33.
  21. Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012) DOI: 10.1002/spe TAG SIMILARITIES TO DISCOVER SYNONYMS AND HOMONYMS IN FOLKSONOMIES
  22. Brooks CH, Montanez N. Improved annotation of the blogosphere via autotagging and hierarchical clustering. Proceedings of the 15th International Conference on World Wide Web (WWW2006), Edinburgh, Scotland, 2006; 625-632.
  23. Grahl M, Hotho A, Stumme G. Conceptual clustering of social bookmarking sites. Proceedings of the 7th International Conference on Knowledge Management (I-KNOW '07), Know-Center, Graz, Austria, 2007; 356-364.
  24. Pudota N, Dattolo A, Baruzzo A, Ferrara F, Tasso C. Automatic keyphrase extraction and ontology mining for content-based tag recommendation. Int. J. Intell. Syst. 2010; 25(12):1158-1186.
  25. Dix A, Levialdi S, Malizia A. Semantic halo for collaboration tagging systems. Proceedings of the Workshop on the Social Navigation and Community Based Adaptation Technologies, Dublin, Ireland, 2006; 514-521.
  26. Vandic D, van Dam J-W, Hogenboom F, Frasincar F. A semantic clustering-based approach for searching and browsing tag spaces. Proceedings of the 2011 ACM Symposium on Applied Computing, SAC '11, New York, NY, USA, 2011; 1693-1699.
  27. Dattolo A, Ferrara F, Tasso C. Neighbor selection and recommendations in social bookmarking tools. Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications, ISDA '09, Washington, DC, USA; 267-272.
  28. Specia L, Motta E. Integrating folksonomies with the semantic web. In Proceedings of the European Semantic Web Conference (ESWC2007), Vol. 4519, LNCS. Springer-Verlag: Berlin Heidelberg, Germany, 2007; 624-639.
  29. Desrosiers C, Karypis G. A comprehensive survey of neighborhood-based recommendation methods. In Recommender Systems Handbook, Ricci F, Rokach L, Shapira B, Kantor PB (eds). Springer US, 2011; 107-144.
  30. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E 2004; 69(2):026113.1-15.
  31. Markines B, Cattuto C, Menczer F, Benz D, Hotho A, Stumme G. Evaluating similarity measures for emergent semantics of social tagging. Proceedings of the 18th International Conference on World Wide Web (WWW'09), Madrid, Spain, April 2009; 641-650.
  32. Nakamoto R, Nakajima S, Miyazaki J, Uemura S. Tag-based contextual collaborative filtering. Journal of Intelligent Information Systems 2008; 34(2):214-219.
  33. Angeletou S, Motta E, Sabou M. Improving folksonomies using formal knowledge: a case study on search. Proceedings of the 4th Asian Semantic Web Conference, Springer-Verlag, 2009; 276-290.
  34. Lancichinetti A, Fortunato S, Kertesz J. Detecting the overlapping and hierarchical community structure of complex networks. New Journal of Physics 2009; 11(3):033015 (18pp). DOI: 10.1088/1367-2630/11/3/033015.
  35. Harris Z. Mathematical Structures of Language. John Wiley and Son: New York, 1968.
  36. Wetzker R, Zimmermann C, Bauckhage C. Analyzing social bookmarking systems: a del.icio.us cookbook. Proceedings of the Mining Social Data (MSODA) Workshop at ECAI 2008, Patras, Greece, 2008; 26-30.
  37. Laniado D, Eynard D, Colombetti M. Using wordnet to turn a folksonomy into a hierarchy of concepts. Semantic Web Application and Perspectives -Fourth Italian Semantic Web Workshop, Bari, Italy, 2007; 192-201.
  38. Dattolo A, Eynard D, Mazzola L. An integrated approach to discover tag semantics. Proceedings of the 2011 ACM Symposium on Applied Computing, Taichung, Taiwan, 2011; 814-820.
  39. Tan P-N, Steinbach M, Kumar V. Introduction to Data Mining, (first edition). Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2005.