Power Analysis of FPGAs: How Practical Is the Attack? (original) (raw)

Updates on the security of FPGAs against power analysis attacks

2006

This paper reports on the security of cryptographic algorithms implemented on FPGAs against power analysis attacks. We first present some improved experiments against these reconfigurable devices, due to an improved measurement process. Although it is usually believed that FPGAs are noisy targets for such attacks, it is shown that simple power consumption models can nearly perfectly correlate with actual measurements.

Power Analysis of an FPGA

Cryptographic Hardware and …, 2004

Since their publication in 1998, power analysis attacks have attracted significant attention within the cryptographic community. So far, they have been successfully applied to different kinds of (unprotected) implementations of symmetric and public-key encryption schemes. However, most published attacks apply to smart cards and only a few publications assess the vulnerability of hardware implementations. In this paper we investigate the vulnerability of Rijndael FPGA (Field Programmable Gate Array) implementations to power analysis attacks. The design used to carry out the experiments is an optimized architecture with high clock frequencies, presented at CHES 2003. First, we provide a clear discussion of the hypothesis used to mount the attack. Then, we propose theoretical predictions of the attacks that we confirmed experimentally, which are the first successful experiments against an FPGA implementation of Rijndael. In addition, we evaluate the effect of pipelining and unrolling techniques in terms of resistance against power analysis. We also emphasize how the efficiency of the attack significantly depends on the knowledge of the design.

How Secure Are FPGAs in Cryptographic Applications?

Lecture Notes in Computer Science, 2003

The use of FPGAs for cryptographic applications is highly attractive for a variety of reasons but at the same time there are many open issues related to the general security of FPGAs. This contribution attempts to provide a state-of-the-art description of this topic. First, the advantages of reconfigurable hardware for cryptographic applications are discussed from a systems perspective. Second, potential security problems of FPGAs are described in detail, followed by a proposal of a some countermeasure. Third, a list of open research problems is provided. Even though there have been many contributions dealing with the algorithmic aspects of cryptographic schemes implemented on FPGAs, this contribution appears to be the first comprehensive treatment of system and security aspects.

An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays

Proceedings of the IEEE, 2000

Since their introduction by Kocher in 1998, power analysis attacks have attracted significant attention within the cryptographic community. While early works in the field mainly threatened the security of smart cards and simple processors, several recent publications have shown the vulnerability of hardware implementations as well. In particular, Field Programmable Gate Arrays are attractive options for hardware implementation of encryption algorithms, but their security against power analysis is a serious concern, as we discuss in this article. For this purpose, we present recent results of attacks attempted against standard encryption algorithms, provide a theoretical estimation of these attacks based on simple statistical parameters and evaluate the cost and security of different possible countermeasures.

Power-analysis attacks on an FPGA–first experimental results

Cryptographic Hardware and Embedded …, 2003

Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular, especially for rapid prototyping. For implementations of cryptographic algorithms, not only the speed and the size of the circuit are important, but also their security against implementation attacks such as side-channel attacks. Power-analysis attacks are typical examples of side-channel attacks, that have been demonstrated to be effective against implementations without special countermeasures. The flexibility of FPGAs is an important advantage in real applications but also in lab environments. It is therefore natural to use FPGAs to assess the vulnerability of hardware implementations to power-analysis attacks. To our knowledge, this paper is the first to describe a setup to conduct power-analysis attacks on FPGAs. We discuss the design of our hand-made FPGA-board and we provide a first characterization of the power consumption of a Virtex 800 FPGA. Finally we provide strong evidence that implementations of elliptic curve cryptosystems without specific countermeasures are indeed vulnerable to simple power-analysis attacks.

On the vulnerability of FPGA bitstream encryption against power analysis attacks

Proceedings of the 18th ACM conference on Computer and communications security - CCS '11, 2011

Over the last two decades FPGAs have become central components for many advanced digital systems, e.g., video signal processing, network routers, data acquisition and military systems. In order to protect the intellectual property and to prevent fraud, e.g., by cloning an FPGA or manipulating its content, many current FPGAs employ a bitstream encryption feature. We develop a successful attack on the bitstream encryption engine integrated in the widespread Virtex-II Pro FPGAs from Xilinx, using side-channel analysis. After measuring the power consumption of a single power-up of the device and a modest amount of off-line computation, we are able to recover all three different keys used by its triple DES module. Our method allows extracting secret keys from any real-world device where the bitstream encryption feature of Virtex-II Pro is enabled. As a consequence, the target product can be cloned and manipulated at will of the attacker. Also, more advanced attacks such as reverse engineering or the introduction of hardware Trojans become potential threats. As part of the side-channel attack, we were able to deduce certain internals of the hardware encryption engine. To our knowledge, this is the first attack against the bitstream encryption of a commercial FPGA reported in the open literature.

Accelerated FPGA based encryption

New Mexico, USA. The …, 2005

Encryption in general and Advanced Encryption Standard (AES) in particular[1], is an application that is very friendly for Field Programmable Gate Array (FPGA) architecture. This is mainly due to the fact that all compu-tations are based on bit manipulation. AES uses Finite Field ...

On the vulnerability of FPGA bitstream encryption against power analysis attacks: extracting keys from xilinx Virtex-II FPGAs

2011

Over the last two decades FPGAs have become central components for many advanced digital systems, e.g., video signal processing, network routers, data acquisition and military systems. In order to protect the intellectual property and to prevent fraud, e.g., by cloning an FPGA or manipulating its content, many current FPGAs employ a bitstream encryption feature. We develop a successful attack on the bitstream encryption engine integrated in the widespread Virtex-II Pro FPGAs from Xilinx, using side-channel analysis. After measuring the power consumption of a single power-up of the device and a modest amount of off-line computation, we are able to recover all three different keys used by its triple DES module. Our method allows extracting secret keys from any real-world device where the bitstream encryption feature of Virtex-II Pro is enabled. As a consequence, the target product can be cloned and manipulated at will of the attacker. Also, more advanced attacks such as reverse engineering or the introduction of hardware Trojans become potential threats. As part of the side-channel attack, we were able to deduce certain internals of the hardware encryption engine. To our knowledge, this is the first attack against the bitstream encryption of a commercial FPGA reported in the open literature.

Power analysis attacks against FPGA implementations of the DES

Field Programmable Logic …, 2004

Cryptosystem designers frequently assume that secret parameters will be manipulated in tamper resistant environments. However, physical implementations can be extremely difficult to control and may result in the unintended leakage of side-channel information. In power analysis attacks, it is assumed that the power consumption is correlated to the data that is being processed. An attacker may therefore recover secret information by simply monitoring the power consumption of a device. Several articles have investigated power attacks in the context of smart card implementations. While FPGAs are becoming increasingly popular for cryptographic applications, there are only a few articles that assess their vulnerability to physical attacks. In this article, we demonstrate the specific properties of FPGAs w.r.t. Differential Power Analysis (DPA). First we emphasize that the original attack by Kocher et al. and the improvements by Brier et al. do not apply directly to FPGAs because their physical behavior differs substantially from that of smart cards. Then we generalize the DPA attack to FPGAs and provide strong evidence that FPGA implementations of the Data Encryption Standard (DES) are vulnerable to such attacks.

An Evaluation Framework for Security Algorithms Performance Realization on FPGA

2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), 2018

Security algorithms play a major role in most of the applications which include electronic gadgets, mobile banking, e-commerce, military, digital image processing, satellite & wireless communications, etc. The realization of the cryptography algorithm on FPGA is an open research problem to meet its benchmark to provide security essentials of confidentiality, integrity, and authentication in fast and accurate ways on future compact devices. This paper proposes an evaluation framework for realizing FPGA for cryptographic algorithms including DES, LED, TDES, AES-128, AES-192, and AES-256 with a symmetric key for both encipher and decipher. The framework is evaluated for its performance metrics of the area, operating frequency and power by hardware prototype architecture for these algorithms on Artix-7 FPGA device. The comparative analysis is presented for these metrics to get insights of its effectiveness on FPGA.