Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus (original) (raw)
Related papers
Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus
Journal of Experimental Biology, 2009
Echolocation allows bats to orient and localize prey in complete darkness. The sonar beam of the big brown bat, Eptesicus fuscus, is directional but broad enough to provide audible echo information from within a 60-90 deg. cone. This suggests that the big brown bat could interrogate a natural scene without fixating each important object separately. We tested this idea by measuring the directional aim and duration of the bat's sonar beam as it performed in a dual task, obstacle avoidance and insect capture. Bats were trained to fly through one of two openings in a fine net to take a tethered insect at variable distances behind the net. The bats sequentially scanned the edges of the net opening and the prey by centering the axis of their sonar beam with an accuracy of ~5 deg. The bats also shifted the duration of their sonar calls, revealing sequential sampling along the range axis. Changes in duration and directional aim were correlated, showing that the bat first inspected the hole, and then shifted its gaze to the more distant insect, before flying through the net opening. Contrary to expectation based on the sonar beam width, big brown bats encountering a complex environment accurately pointed and shifted their sonar gaze to sequentially inspect closely spaced objects in a manner similar to visual animals using saccades and fixations to scan a scene. The findings presented here from a specialized orientation system, echolocation, offer insights into general principles of active sensing across sensory modalities for the perception of natural scenes.
Biosonar discrimination of fine surface textures by echolocating free-tailed bats
Frontiers in Ecology and Evolution
Echolocating bats are able to discriminate between different surface textures based on the spectral properties of returning echoes. This capability is likely to be important for recognizing prey and for finding suitably perching sites along smooth cave walls. Previous studies showed that bats may exploit echo spectral interference patterns in returning echoes to classify surface textures, but a systematic assessment of the limits of their discrimination performance is lacking and may provide important clues about the neural mechanisms by which bats reconstruct target features based on echo acoustic cues. We trained three Mexican free-tailed bats (Tadarida brasiliensis) on a Y-maze to discriminate between the surfaces of 10 different sheets of aluminum-oxide abrasive sandpapers differing in standardized grit sizes ranging from 40 grit (coarse, 425 μm mean particle diameter) to 240 grit (fine, 54 μm mean particle diameter). Bats were rewarded for choosing the coarsest of two choices. ...
Evidence for spatial representation of object shape by echolocating bats (Eptesicus fuscus)
The Journal of the Acoustical Society of America, 2008
Big brown bats were trained in a two-choice task to locate a two-cylinder dipole object with a constant 5 cm spacing in the presence of either a one-cylinder monopole or another two-cylinder dipole with a shorter spacing. For the dipole versus monopole task, the objects were either stationary or in motion during each trial. The dipole and monopole objects varied from trial to trial in the left-right position while also roving in range ͑10-40 cm͒, cross range separation ͑15-40 cm͒, and dipole aspect angle ͑0°-90°͒. These manipulations prevented any single feature of the acoustic stimuli from being a stable indicator of which object was the correct choice. After accounting for effects of masking between echoes from pairs of cylinders at similar distances, the bats discriminated the 5 cm dipole from both the monopole and dipole alternatives with performance independent of aspect angle, implying a distal, spatial object representation rather than a proximal, acoustic object representation.
The Journal of the Acoustical Society of America, 2000
This study aimed to determine whether bats using frequency modulated ͑FM͒ echolocation signals adapt the features of their vocalizations to the perceptual demands of a particular sonar task. Quantitative measures were obtained from the vocal signals produced by echolocating bats ͑Eptesicus fuscus͒ that were trained to perform in two distinct perceptual tasks, echo delay and Doppler-shift discriminations. In both perceptual tasks, the bats learned to discriminate electronically manipulated playback signals of their own echolocation sounds, which simulated echoes from sonar targets. Both tasks utilized a single-channel electronic target simulator and tested the bat's in a two-alternative forced choice procedure. The results of this study demonstrate changes in the features of the FM bats' sonar sounds with echolocation task demands, lending support to the notion that this animal actively controls the echo information that guides its behavior.
Coordination of bat sonar activity and flight for the exploration of three-dimensional objects
Journal of Experimental Biology, 2012
The unique combination of flight and echolocation has opened the nocturnal air space as a rich ecological niche for bats. By analysing echoes of their sonar emissions, bats discriminate and recognize three-dimensional (3-D) objects. However, in contrast to vision, the 3-D information that can be gained by ensonifying an object from only one observation angle is sparse. To date, it is unclear how bats synchronize echolocation and flight activity to explore the 3-D shape of ensonified objects. We have devised an experimental design that allows creating 3-D virtual echo-acoustic objects by generating in real-time echoes from the batʼs emissions that depend on the batʼs position relative to the virtual object. Bats were trained to evaluate these 3-D virtual objects differing in their azimuthal variation of either echo amplitude or spectral composition. The data show that through a very effective coordination of sonar and flight activity, bats analyse an azimuthal variation of echo amplitude with a resolution of approximately 16dB and a variation of echo centre frequency of approximately 19%. Control experiments show that the bats can detect not only these variations but also perturbations in the spatial arrangement of these variations. The current experimental paradigm shows that echolocating bats assemble echo-acoustic object information -acquired sequentially in flight -to reconstruct the 3-D shape of the ensonified object. Unlike previous approaches, the recruitment of virtual objects allows for a direct quantification of this reconstruction success in a highly controlled experimental approach.
Probing the natural scene by echolocation in bats
2010
a direct impact on the information available to its acoustic imaging system. In turn, the bat's perception of the echo scene guides its adjustments of the features of subsequent sonar vocalizations. Therefore, the bat's adaptive sonar behavior can shed light on the fundamental processes that underlie auditory scene analysis by echolocation. Indeed, the bat's active sonar behavior allows us to listen in on the signals that are used to perform a variety of auditory tasks. Here we review laboratory and field studies that point to the features echolocating bats use to represent information about a complex acoustic environment and the general importance of an animal's actions to its perception of natural scenes.
Auditory scene analysis by echolocation in bats
The Journal of the Acoustical Society of America, 2001
Echolocating bats transmit ultrasonic vocalizations and use information contained in the reflected sounds to analyze the auditory scene. Auditory scene analysis, a phenomenon that applies broadly to all hearing vertebrates, involves the grouping and segregation of sounds to perceptually organize information about auditory objects. The perceptual organization of sound is influenced by the spectral and temporal characteristics of acoustic signals. In the case of the echolocating bat, its active control over the timing, duration, intensity, and bandwidth of sonar transmissions directly impacts its perception of the auditory objects that comprise the scene. Here, data are presented from perceptual experiments, laboratory insect capture studies, and field recordings of sonar behavior of different bat species, to illustrate principles of importance to auditory scene analysis by echolocation in bats. In the perceptual experiments, FM bats ͑Eptesicus fuscus͒ learned to discriminate between systematic and random delay sequences in echo playback sets. The results of these experiments demonstrate that the FM bat can assemble information about echo delay changes over time, a requirement for the analysis of a dynamic auditory scene. Laboratory insect capture experiments examined the vocal production patterns of flying E. fuscus taking tethered insects in a large room. In each trial, the bats consistently produced echolocation signal groups with a relatively stable repetition rate ͑within 5%͒. Similar temporal patterning of sonar vocalizations was also observed in the field recordings from E. fuscus, thus suggesting the importance of temporal control of vocal production for perceptually guided behavior. It is hypothesized that a stable sonar signal production rate facilitates the perceptual organization of echoes arriving from objects at different directions and distances as the bat flies through a dynamic auditory scene. Field recordings of E. fuscus, Noctilio albiventris, N. leporinus, Pippistrellus pippistrellus, and Cormura brevirostris revealed that spectral adjustments in sonar signals may also be important to permit tracking of echoes in a complex auditory scene.
Adaptive echolocation behavior in bats for the analysis of auditory scenes
Journal of Experimental Biology, 2009
Echolocating bats emit sonar pulses and listen to returning echoes to probe their surroundings. Bats adapt their echolocation call design to cope with dynamic changes in the acoustic environment, including habitat change or the presence of nearby conspecifics/heterospecifics. Seven pairs of big brown bats, Eptesicus fuscus, were tested in this study to examine how they adjusted their echolocation calls when flying and competing with a conspecific for food. Results showed that differences in five call parameters, start/end frequencies, duration, bandwidth and sweep rate, significantly increased in the two-bat condition compared with the baseline data. In addition, the magnitude of spectral separation of calls was negatively correlated with the baseline call design differences in individual bats. Bats with small baseline call frequency differences showed larger increases in call frequency separation when paired than those with large baseline call frequency differences, suggesting that bats actively change their sonar call structure if pre-existing differences in call design are small. Call design adjustments were also influenced by physical spacing between two bats. Calls of paired bats exhibited the largest design separations when inter-bat distance was shorter than 0.5 m, and the separation decreased as the spacing increased. All individuals modified at least one baseline call parameter in response to the presence of another conspecific. We propose that dissimilarity between the time-frequency features of sonar calls produced by different bats aids each individual in segregating echoes of its own sonar vocalizations from the acoustic signals of neighboring bats.
The Sonar Aperture and Its Neural Representation in Bats
Journal of Neuroscience, 2011
As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.
Adaptive vocal behavior drives perception by echolocation in bats
Current Opinion in Neurobiology, 2011
Echolocation operates through adaptive sensorimotor systems that collectively enable the bat to localize and track sonar objects as it flies. The features of sonar signals used by a bat to probe its surroundings determine the information available to its acoustic imaging system. In turn, the bat's perception of a complex scene guides its active adjustments in the features of subsequent sonar vocalizations. Here, we propose that the bat's active vocal-motor behaviors play directly into its representation of a dynamic auditory scene.