Polariton spin beats in semiconductor quantum well microcavities (original) (raw)

Abstract

Time-resolved Kerr (Faraday) rotation experiments allow for the observation of polariton spin beats in both InGaAs and CdMnTe quantum well (QW) microcavities. The existence of these beats is an unambiguous manifestation of the coherent energy exchange between exciton and photon components of polariton states created by a circularly polarized and spectrally wide femtosecond laser pulse. The polariton states are also shown to be split into a linearly polarized doublet. This splitting is responsible for the polarization transfer between linearly and circularly polarized states. In a highest quality sample the resulting spin dynamics could be detected.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (17)

  1. I. A. Shelykh, A. V. Kavokin, and G. Malpuech, in The Physics of Semiconductor Microcavities (Edited by Benoit Deveaud, Wiley-VCH, 2007).
  2. P. G. Lagoudakis, P. G. Savvidis, J. J. Baumberg, D. M. Whittaker, P. R. Eastham, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 65, 161310 (2002);
  3. A. Kavokin, P. G. Lagoudakis, G. Malpuech, and J. J. Baumberg Phys. Rev. B 67, 195321 (2003).
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andr, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, Le Si Dang, Nature 443, 409 (2006).
  5. A. Brunetti, M. Vladimirova, D. Scalbert, M. Nawrocki, A. V. Kavokin, I. A. Shelykh, and J. Bloch, Phys. Rev. B 74, 241101 (2006).
  6. M. Koch, J. Shah, and T. Meier, Phys. Rev. B 57, R2049 (1998).
  7. M. Haddad, R. André, R. Frey, and C. Flytzanis, Solid State Commun. 111, 61 (1999).
  8. H. Ulmer-Tuffigo, F. Kany, G. Feuillet, R. Langer, J. Bleuse, J.L. Pautrat, J. Crystal Growth 159, 605 (1996).
  9. V. Savona, L.C. Andreani, P. Schwendimann, and A. Quattropani, Solid State Commun. 93, 733 (1995).
  10. A. Brunetti, M. Vladimirova, D. Scalbert, R. André, D. Solnyshkov, G. Malpuech, I. A. Shelykh, and A. V. Kavokin, Phys. Rev. B 73, 205337 (2006).
  11. A. Brunetti, M. Vladimirova, D. Scalbert and R. André, Phys. Stat. Sol. (c) 2, 3876-3879 (2005).
  12. A. Brunetti, M. Vladimirova, D. Scalbert and R. André, AIP Conf. Proc., to be published.
  13. For each polariton branch first the transmission spectrum is fitted by a Gaussian. Then LD spectrum is fitted by the difference between two Gaussians with the parameters obtained from the first fit, but with the central energy shifted by δE, that is the polariton linear splitting.
  14. V. Koudinov, N. S. Averkiev, Yu. G. Kusrayev, B. R. Namozov, B. P. Zakharchenya, D. Wolverson, J. J. Davies, T. Wojtowicz, G. Karczewski, and J. Kossut, Phys. Rev. B 74, 195338 (2006);
  15. Klopotowski, M. D. Martin, A. Amo, L. Via, I.A. Shelykh, M. M. Glazov, G. Malpuech, A.V. Kavokin, R. Andr, Solid State Comm. 139, 511 (2006).
  16. C. Gourdon and P. Lavallard, Phys. Rev. B 46, 4644 (1992);
  17. I. V. Mashkov, C. Gourdon, P. Lavallard and D. Yu Roditchev, Phys. Rev. B 55, 13761 (1997).