A global survey of gene regulation during cold acclimation in Arabidopsis thaliana (original) (raw)

Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis

Plant physiology, 2006

The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (-1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identif...

Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature

BMC Genomics, 2008

Background: Abiotic stress, including low temperature, limits the productivity and geographical distribution of plants, which has led to significant interest in understanding the complex processes that allow plants to adapt to such stresses. The wide range of physiological, biochemical and molecular changes that occur in plants exposed to low temperature require a robust global approach to studying the response. We have employed Serial Analysis of Gene Expression (SAGE) to uncover changes in the transcriptome of Arabidopsis thaliana over a time course of low temperature stress.

Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays

Functional & Integrative Genomics, 2006

A comparative analysis of gene expression profiles during cold acclimation and deacclimation is necessary to elucidate the molecular mechanisms of cold stress responses in higher plants. We analyzed gene expression profiles in the process of cold acclimation and deacclimation (recovery from cold stress) using two microarray systems, the 7K RAFL cDNA microarray and the Agilent 22K oligonucleotide array. By both microarray analyses, we identified 292 genes up-regulated and 320 genes down-regulated during deacclimation, and 445 cold up-regulated genes and 341 cold down-regulated genes during cold acclimation. Many genes up-regulated during deacclimation were found to be down-regulated during cold acclimation, and vice versa. The genes up-regulated during deacclimation were classified into (1) regulatory proteins involved in further regulation of signal transduction and gene expression and (2) functional proteins involved in the recovery process from cold-stress-induced damages and plant growth. We also applied expression profiling studies to identify the key genes involved in the biosynthesis of carbohydrates and amino acids that are known to play important roles in cold acclimation. We compared genes that are regulated during deacclimation with those regulated during rehydration after dehydration to discuss the similarity and difference of each recovery process.

Gene Expression Phenotypes of Arabidopsis Associated with Sensitivity to Low Temperatures

Plant Physiology, 2003

Chilling is a common abiotic stress that leads to economic losses in agriculture. By comparing the transcriptome of Arabidopsis under normal (22°C) and chilling (13°C) conditions, we have surveyed the molecular responses of a chillingresistant plant to acclimate to a moderate reduction in temperature. The mRNA accumulation of approximately 20% of the approximately 8,000 genes analyzed was affected by chilling. In particular, a highly significant number of genes involved in protein biosynthesis displayed an increase in transcript abundance. We have analyzed the molecular phenotypes of 12 chilling-sensitive mutants exposed to 13°C before any visible phenotype could be detected. The number and pattern of expression of chilling-responsive genes in the mutants were consistent with their final degree of chilling injury. The mRNA accumulation profiles for the chilling-lethal mutants chs1, chs2, and chs3 were highly similar and included extensive chilling-induced and mutant-specific alterations in gene expression. The expression pattern of the mutants upon chilling suggests that the normal function of the mutated loci prevents a damaging widespread effect of chilling on transcriptional regulation. In addition, we have identified 634 chilling-responsive genes with aberrant expression in all of the chilling-lethal mutants. This reference gene list, including genes related to lipid metabolism, chloroplast function, carbohydrate metabolism and free radical detoxification, represents a potential source for genes with a critical role in plant acclimation to suboptimal temperatures. The comparison of transcriptome profiles after transfer of Arabidopsis plants from 22°C to 13°C versus transfer to 4°C suggests that quantitative and temporal differences exist between these molecular responses. ;fax919 -541-8585.

Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content: Gene-metabolite linkages at low temperature

Plant Journal, 2007

Exposure of Arabidopsis to low temperatures results in cold acclimation where freezing tolerance is enhanced. To achieve a wider view of the role of transcriptome to biochemical changes that occur during cold acclimation, analyses of concurrent transcript and metabolite changes during cold acclimation was performed revealing the dynamics of selected gene–metabolite relationships. Exposure to low temperature resulted in broad transcriptional and metabolite responses. Principal component analysis revealed sequentially progressive, global changes in both gene expression and metabolite profiles during cold acclimation. Changes in transcript abundance for many metabolic processes, including protein amino acid biosynthetic pathways and soluble carbohydrates, during cold acclimation were observed. For some metabolic processes, changes in transcript abundance temporally correlated with changes in metabolite levels. For other metabolic processes, changes in transcript levels were not correlated with changes in metabolite levels. The present findings demonstrate that regulatory processes independent of transcript abundance represent a key part of the metabolic adjustments that occur during cold acclimation.

Analysis of differential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis

Molecular & cellular proteomics : MCP, 2014

Overwintering plants are capable of exhibiting high levels of cold tolerance, which is acquired through the process of cold acclimation (CA). In contrast to CA, the acquired freezing tolerance is rapidly reduced during cold de-acclimation (DA) and plants resume growth after sensing warm temperatures. In order to better understand plant growth and development, and to aid in the breeding of cold-tolerant plants, it is important to decipher the functional mechanisms of the DA process. In this study, we performed comparative transcriptomic and proteomic analyses during CA and DA. As revealed by shotgun proteomics, we identified 3987 peptides originating from 1569 unique proteins and the corresponding mRNAs were analyzed. Among the 1569 genes, 658 genes were specifically induced at the transcriptional level during the process of cold acclimation. In order to investigate the relationship between mRNA and the corresponding protein expression pattern, a Pearson correlation was analyzed. Int...

ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis

Genes & …, 2003

Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants.

Cold stress regulation of gene expression in plants

Trends in plant science, 2007

Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses.