Towards a Systems Approach for Lignin Biosynthesis in Populus trichocarpa: Transcript Abundance and Specificity of the Monolignol Biosynthetic Genes (original) (raw)

Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes

Molecular Genetics and Genomics, 2020

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1,

Ectopic Expression of a Loblolly Pine Class II 4-Coumarate:CoA Ligase Alters Soluble Phenylpropanoid Metabolism but not Lignin Biosynthesis in Populus

Plant Cell Physiology, 2014

4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.

CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa

The New phytologist, 2018

Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis. Enzyme activity assays from stem-differentiating xylem (SDX) proteins showed that RNAi suppression of PtrCAD1 in P. trichocarpa transgenics caused a reduction in SDX CCR activity. RNAi suppression of PtrCCR2, the only CCR member highly expressed in SDX, caused a reciprocal reduction in SDX protein CAD activities. The enzyme assays of mixed and co-expressed recombinant proteins supported physical interactions between PtrCAD1 and PtrCCR2. Biomolecular fluorescence complementation and pull down/co-immunoprecipitation experime...

Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR

Plant Molecular Biology, 2007

Lignin biosynthesis is a major carbon sink in gymnosperms and woody angiosperms. Many of the enzymes involved are encoded for by several genes, some of which are also related to the biosynthesis of other phenylpropanoids. In this study, we aimed at the identification of those gene family members that are responsible for developmental lignification in Norway spruce (Picea abies (L.) Karst.). Gene expression across the whole lignin biosynthetic pathway was profiled using EST sequencing and quantitative real-time RT-PCR. Stress-induced lignification during bending stress and Heterobasidion annosum infection was also studied. Altogether 7,189 ESTs were sequenced from a lignin forming tissue culture and developing xylem of spruce, and clustered into 3,831 unigenes. Several paralogous genes were found for both monolignol biosynthetic and polymerisation-related enzymes. Real-time RT-PCR results highlighted the set of monolignol biosynthetic genes that are likely to be responsible for developmental lignification in Norway spruce. Potential genes for monolignol polymerisation were also identified. In compression wood, mostly the same monolignol biosynthetic gene set was expressed, but peroxidase expression differed from the vertically grown control. Pathogen infection in phloem resulted in a general up-regulation of the monolignol biosynthetic pathway, and in an induction of a few new gene family members. Based on the up-regulation under both pathogen attack and in compression wood, PaPAL2, PaPX2 and PaPX3 appeared to have a general stress-induced function.

Genome‐wide analysis of the lignin toolbox of E ucalyptus grandis

New Phytologist, 2015

 Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification.  We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes.  The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate Ohydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox.  The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop worldwide , provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.

Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

BMC Bioinformatics, 2009

Background: As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.

Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis

The Plant Journal, 2010

Lignin engineering is a promising strategy to optimize lignocellulosic plant biomass for use as a renewable feedstock for agro-industrial applications. Current efforts focus on engineering lignin with monomers that are not normally incorporated into wild-type lignins. Here we describe an Arabidopsis line in which the lignin is derived to a major extent from a non-traditional monomer. The combination of mutation in the gene encoding caffeic acid O-methyltransferase (comt) with over-expression of ferulate 5-hydroxylase under the control of the cinnamate 4-hydroxylase promoter (C4H:F5H1) resulted in plants with a unique lignin comprising almost 92% benzodioxane units. In addition to biosynthesis of this particular lignin, the comt C4H:F5H1 plants revealed massive shifts in phenolic metabolism compared to the wild type. The structures of 38 metabolites that accumulated in comt C4H:F51 plants were resolved by mass spectral analyses, and were shown to derive from 5-hydroxy-substituted phenylpropanoids. These metabolites probably originate from passive metabolism via existing biochemical routes normally used for 5-methoxylated and 5-unsubstituted phenylpropanoids and from active detoxification by hexosylation. Transcripts of the phenylpropanoid biosynthesis pathway were highly up-regulated in comt C4H:F5H1 plants, indicating feedback regulation within the pathway. To investigate the role of flavonoids in the abnormal growth of comt C4H:F5H1 plants, a mutation in a gene encoding chalcone synthase (chs) was crossed in. The resulting comt C4H:F5H1 chs plants showed partial restoration of growth. However, a causal connection between flavonoid deficiency and this restoration of growth was not demonstrated; instead, genetic interactions between phenylpropanoid and flavonoid biosynthesis could explain the partial restoration. These genetic interactions must be taken into account in future cell-wall engineering strategies. Figure 3. Partial short-range 13 C-1 H (HSQC) spectra (aromatic regions) of acetylated enzyme lignins. See Figure S2 for spectra of the complete set of transgenic lines and controls. Concomitant F5H1 up-regulation and COMT down-regulation in Arabidopsis 889 Abstract Article References Supporting Information Cited By

Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor

Proceedings of the National Academy of Sciences, 1988

Cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) catalyzes the final step in a branch of phenylpropanoid synthesis specific for production of lignin monomers. We have isolated a full-length cDNA clone encoding CAD, as a molecular marker specific for lignification, by immunoscreening a Agtll library containing cDNAs complementary to mRNA from elicitor-treated cell cultures of bean (Phaseolus vulgaris L.). The clone comprises a single long open reading frame of 1767 base pairs, 31 base pairs of 5' leader, and 152 base pairs of 3' untranslated sequence. The deduced 65-kDa CAD polypeptide has several features that are strongly conserved in alcohol dehydrogenases. Addition of fungal elicitor to cell cultures stimulates CAD transcription, which leads to a remarkably rapid, but transient, accumulation of CAD mRNA, with no detectable lag and maximal levels after 1.5 hr. Southern blot analysis of bean genomic DNA indicates that elicitor-induced CAD is encoded by a single gene. The regulatory significance of the rapid activation of this CAD gene and the possible existence ofa second, divergent CAD gene involved in lignification during xylogenesis are discussed.