Cell Traffic and the Lymphatic Endothelium (original) (raw)
Abstract
The principal immune function of the afferent lymphatics is to bear antigen and leukocytes from peripheral tissues to the draining lymph nodes. Recent research has shown that passage of leukocytes into the afferent lymphatic capillaries is far from an indolent process; rather it is carefully orchestrated by an array of adhesion molecules, as well as by chemokines and their receptors.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (105)
- YOUNG, A.J. 1999. The physiology of lymphocyte migra- tion through the single lymph node in vivo. Semin. Im- munol. 11: 73-83.
- AUSTYN, J.M. 1989. Migration patterns of dendritic leuko- cytes. Res. Immunol. 140: 898-902.
- ZINKERNAGEL, R.M. 1996. Immunology taught by viruses. Science 271: 173-178.
- RANDOLPH, G.J. 2001. Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin. Immunol. 13: 267-274.
- STOITZNER, P. et al. 2002. A close-up view of migrating Langerhans cells in the skin. J. Invest. Dermatol. 118: 117-125.
- STOITZNER, P. et al. 2003. Visualization and characteriza- tion of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207. J. Invest. Dermatol. 120: 266-274.
- HUANG, F.-P. et al. 2000. A discrete subpopulation of den- dritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191: 435-443.
- SCHEINECKER, C. et al. 2002. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196: 1079-1090.
- STEINMAN, R.M., D. HAWIGER & M.C. NUSSENZWEIG. 2003. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21: 685-711.
- F ÖRSTER, R. et al. 1999. CCR7 coordinates the primary immune response by establishing functional microenvi- ronments in secondary lymphoid organs. Cell 99: 23-33.
- OHL, L. et al. 2004. CCR7 govern skin dendritic cell mi- gration under inflammatory and steady-state conditions. Immunity 21: 279-288.
- GUNN, M.D. et al. 1999. Mice lacking expression of sec- ondary lymphoid organ chemokine have defects in lym- phocyte homing and dendritic cell localization. J. Exp. Med. 189: 451-460.
- LUTHER, S.A. et al. 2000. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA 97: 12694-12699.
- VASSILEVA, G. et al. 1999. The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J. Exp. Med. 190: 1183-1188.
- SAEKI, H. et al. 1999. Cutting edge: secondary lymphoid- tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 162: 2472-2475.
- MARTÍN-FONTECHA, A. et al. 2003. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198: 615-621.
- KRIEHUBER, E. et al. 2001. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med. 194: 797-808.
- WICK, N. et al. 2007. Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro. Physiol. Genomics 28: 179-192.
- WORBS, T. et al. 2007. CCR7 ligands stimulate the intran- odal motility of T lymphocytes in vivo. J. Exp. Med. 204: 489-495.
- BROMLEY, S.K., S.Y. THOMAS & A.D. LUSTER. 2005. Chemokine receptor CCR7 guides T cell exit from pe- ripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6: 895-901.
- DEBES, G.F. et al. 2005. Chemokine receptor CCR7 re- quired for T lymphocyte exit from the peripheral tissues. Nat. Immunol. 6: 889-894.
- LEDGERWOOD, L.G. et al. 2008. The sphingosine 1- phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat. Immunol. 9: 42-53.
- KABASHIMA, K. et al. 2007. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171: 1249-1257.
- JOHNSON, L.A. et al. 2006. An inflammation-induced mech- anism for leukocyte transmigration across lymphatic ves- sel endothelium. J. Exp. Med. 203: 2763-2777.
- MANCARDI, S. et al. 2003. Evidence of CXC, CC and C chemokine production by lymphatic endothelial cells. Immunology 108: 523-530.
- NIBBS, R.J. B. et al. 2001. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol. 158: 867-877.
- MARTINEZ DE LA TORRE, Y. et al. 2005. Increased inflamma- tion in mice deficient for the chemokine decoy receptor D6. Eur. J. Immunol. 35: 1342-1346.
- PALFRAMAN, R.T. et al. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissue. J. Exp. Med. 194: 1361-1373.
- GRETZ, J.E. et al. 2000. Lymph-borne chemokines and other low molecular weight molecules reach high en- dothelial venules via specialized conduits while a func- tional barrier limits access to the lymphocyte microen- vironments in lymph node cortex. J. Exp. Med. 192: 1425-1439.
- SMITH, J.B., G.H. MCINTOSH & B. MORRIS. 1970. The traffic of cells through tissues: a study of peripheral lymph in sheep. J. Anat. 107: 87-100.
- ABADIE, V. et al. 2005. Neutrophils rapidly migrate via lym- phatics after Mycobacterium bovis BCG intradermal vac- cination and shuttle live bacilli to the draining lymph nodes. Blood 106: 1843-1850.
- MALETTO, B.A. et al. 2006. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood 108: 3094-3102.
- ALON, R. et al. 1995. The integrin VLA-4 supports teth- ering and rolling in flow on VCAM-1. J. Cell Biol. 128: 1243-1253.
- VAN DINTHER-JANSSEN, A.C. et al. 1991. The VLA- 4/VCAM-1 pathway is involved in lymphocyte adhesion to endothelium in rheumatoid synovium. J. Immunol. 147: 4207-4210.
- ROTHLEIN, R. et al. 1986. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137: 1270-1274.
- SPRINGER, T.A. 1990. Adhesion receptors of the immune system. Nature 346: 425.
- OPPENHEIMER-MARKS, N. et al. 1991. Differential utiliza- tion of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J. Immunol. 147: 2913-2921.
- MAKGOBA, M.W. et al. 1988. ICAM-1 a ligand for LFA-A- dependent adhesion of B, T and myeloid cells. Nature 6151: 86-88.
- KAVANAUGH, A.F. et al. 1991. Role of CD11/CD18 in ad- hesion and transendothelial migration of T cells. J. Im- munol. 146: 4149-4156.
- GREENWOOD, J., Y. WANG & V.L. CALDER. 1995. Lympho- cyte adhesion and transendothelial migration in the cen- tral nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology 86: 408-415.
- MCLAUGHLIN, F. et al. 1998. Tumour necrosis factor (TNF)- alpha and interleukin (IL)-1beta down-regulate intercel- lular adhesion molecule (ICAM)-2 expression on the en- dothelium. Cell Adhes. Commun. 6: 381-400.
- LEHMANN, J.C. U. et al. 2003. Overlapping and selective roles of endothelial intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in lymphocyte trafficking. J. Im- munol. 171: 2588-2593.
- SLIGH, J.E. et al. 1993. Inflammatory and immune re- sponses are impaired in mice deficient in intercellular ad- hesion molecule 1. Proc. Natl. Acad. Sci. USA 90: 8529- 8533.
- XU, H. et al. 2001. The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur. J. Immunol. 31: 3085-3093.
- SCHENKEL, A.R. et al. 2004. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat. Immunol. 5: 393-400.
- JOHNSON-LEGER, C., M. AURRAND-LIONS & B.A. IMHOF. 2000. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113: 921-933.
- SCHENKEL, A.R. et al. 2002. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat. Immunol. 3: 143-150.
- DEL MASCHIO, A. et al. 1999. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningi- tis is inhibited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med. 190: 1351-1356.
- SHAW, S.K. et al. 2001. Reduced expression of junctional adhesion molecule and platelet/endothelial cell adhe- sion molecule-1 (CD31) at human vascular endothelial junctions by cytokines tumour necrosis factor-alpha plus interferon-gamma does not reduce leukocyte transmigra- tion under flow. Am. J. Pathol. 159: 2281-2291.
- MULLER, W.A. 2003. Leukocyte-endothelial-cell interac- tions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24: 326-333.
- SHAW, S.K. et al. 2001. Real-time imaging of vascu- lar endothelial-cadherin during leukocyte transmigra- tion across endothelium. J. Immunol. 167: 2323- 2330.
- MAMDOUH, Z. et al. 2003. Targeted recycling of PECAM from endothelial surface-connected compartments dur- ing diapedesis. Nature 421: 748-753.
- MARCHESI, V.T. & J.L. GOWANS. 1964. The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc. R. Soc. Lon. Ser. B. 159: 283-290.
- FENG, D. et al. 1998. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187: 903-915.
- BARREIRO, O. et al. 2002. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157: 1233-1245.
- MILLAN, J. et al. 2006. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola-and F-actin-rich domains. Nat. Cell Biol. 8: 113-123.
- CARMAN, C.V. et al. 2003. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J. Immunol. 171: 6135-6144.
- CARMAN, C.V. & T.A. SPRINGER. 2004. A transmigratory cup in leukocyte diapedesis both through individual vas- cular endothelial cells and between them. J. Cell Biol. 167: 377-388.
- CARMAN, C.V. et al. 2007. Transcellular diapedesis is initi- ated by invasive podosomes. Immunity 26: 784-797.
- NIEMINEN, M. et al. 2006. Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8: 156-162.
- WYBLE, C.W. et al. 1997. TNF-alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a com- mon pathway. J. Surg. Res. 73: 107-112.
- VON ANDRIAN, U.H. & C.R. MACKAY. 2000. T-cell function and migration. N. Engl. J. Med. 343: 1020-1034.
- BEVILACQUA, M.P. et al. 1989. Endothelial leukocyte ad- hesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243: 1160-1165.
- WELLER, P.F. et al. 1991. Human eosinophil adherence to vascular endothelium mediated by binding to vascular cell adhesion molecule 1 and endothelial leukocyte ad- hesion molecule 1. Proc. Natl. Acad. Sci. USA 88: 7430- 7433.
- HIDALGO, A. et al. 2007. Complete identification of E- selectin ligands on neutrophils reveals distinct functions of PSCL-1, ESL-1 and CD44. Immunity 26: 477-489.
- KANNAGI, R. 2002. Regulatory roles of carbohydrate lig- ands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12: 599-608.
- SACKSTEIN, R. 2005. The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr. Opin. Hematol. 12: 444-450.
- SIMON, S.I. et al. 2000. Neutrophil tethering on E- selectin activates 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J. Immunol. 164: 4348-4358.
- CERA, M.R. et al. 2004. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J. Clin. Invest. 114: 729-738.
- BALUK, P. et al. 2007. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204: 2349-2362.
- AURRAND-LIONS, M. et al. 2001. JAM-2, a novel im- munoglobulin superfamily molecule, expressed by en- dothelial and lymphatic cells. J. Biol. Chem. 276: 2733- 2741.
- JOHNSON-LEGER, C. et al. 2002. Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothe- lial migration. Blood 100: 2479-2486.
- IMHOF, B.A. & M. AURRAND-LIONS. 2004. Adhesion mech- anisms regulating the migration of monocytes. Nat. Rev. Immunol. 4: 423-444.
- LAMAGNA, C. et al. 2005. Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: function in junc- tional complexes and leukocyte adhesion. Mol. Biol. Cell. 16: 4992-5003.
- STAUNTON, D.E., M.L. DUSTIN & T.A. SPRINGER. 1989. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339: 61-64.
- WETHMAR, K. et al. 2006. Migration of immature mouse DC across resting endothelium is mediated by ICAM- 2 but independent of beta2-integrins and murine DC- SIGN homologues. Eur. J. Immunol. 36: 2781-2794.
- MULLER, W.A. et al. 1989. A human endothelial cell- restricted, externally disposed plasmalemmal protein en- riched in intercellular junctions. J. Exp. Med. 170: 399.
- BUCKLEY, C.D. et al. 1996. Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. J. Cell Sci. 109: 437-445.
- JACKSON, D.E. 2003. The unfolding tale of PECAM-1. FEBS Lett. 540: 7-14.
- BOGEN, S.A. et al. 1992. Association of murine CD31 with transmigrating lymphocytes following antigenic stimula- tion. Am. J. Pathol. 141: 843-854.
- MULLER, W.A. et al. 1993. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178: 449-460.
- SCHENKEL, A.R., T.W. CHEW & W.A. MULLER. 2004. Platelet endothelial cell adhesion molecule deficiency or blockade signficantly reduces leukocyte emigration in a majority of mouse strains. J. Immunol. 173: 6403-6408.
- LOU, O. et al. 2007. CD99 is a key mediator of the transendothelial migration of neutrophils. J. Immunol. 178: 1136-1143.
- WEGMANN, F. et al. 2006. ESAM supports neutrophil ex- travasation, activation of Rho, and VEGF-induced vas- cular permeability. J. Exp. Med. 203: 1671-1677.
- PREVO, R. et al. 2004. Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothe- lial venule scavenger receptor/homing receptor stabilin- 1 (FEEL-1/CLEVER-1). J. Biol. Chem. 279: 52580- 52592.
- SALMI, M. et al. 2004. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothe- lium. Blood 104: 3849-3857.
- STAHL, P.D. & R.A. EZEKOWITZ. 1998. The mannose re- ceptor is a pattern recognition receptor involved in host defense. Curr. Opin. Immunol. 10: 50-55.
- IRJALA, H. et al. 2001. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J. Exp. Med. 194: 1033-1041.
- PETROVA, T.V. et al. 2002. Lymphatic endothelial repro- gramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21: 4593- 4599.
- HIRAKAWA, S. et al. 2003. Identification of vascular lineage- specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol. 162: 575-586.
- WETTERWALD, A. et al. 1996. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 18: 125-132.
- KERJASCHKI, D. et al. 2004. Lymphatic neoangiogenesis in human kidney transplants is associated with immunolog- ically active lymphocytic infiltrates. J. Am. Soc. Nephrol. 15: 603-612.
- MARTIN-VILLAR, E. et al. 2005. Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small mem- brane mucin induced in oral squamous cell carcinomas. Int. J. Cancer 113: 899-910.
- WICKI, A. et al. 2006. Tumor invasion in the ab- sence of epithelial-mesenchymal transition: podoplanin- mediated remodeling of the actin cytoskeleton. Cancer Cell 9: 261-272.
- RAMIREZ, M.I. et al. 2003. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell pro- liferation and alveolus formation at birth. Dev. Biol. 256: 61-72.
- SCHACHT, V. et al. 2003. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 22: 3546-3556.
- BANERJI, S. et al. 1999. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144: 789-801.
- PREVO, R. et al. 2001. Mouse LYVE-1 is an endocytic re- ceptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 276: 19420-19430.
- JACKSON, D.G. 2003. The lymphatics revisited: new per- spectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc. Med. 13: 1-7.
- JACKSON, D.G. 2004. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic traf- ficking and lymphangiogenesis. Acta Pathol. Microbiol. Immunol. Scand. 112: 526-538.
- GALE, N.W. et al. 2006. Normal lymphatic develop- ment and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol. Cell Biol. 27: 595- 604.
- JOHNSON, L.A. et al. 2007. Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluro- nan receptor LYVE-1. J. Biol. Chem. 282: 33671- 33680.
- NIGHTINGALE, T.D., S. BANERJI & D.G. JACKSON. 2005. Functional regulation of the lymphatic endothe- lium hyaluronan receptor LYVE-1: the role of N- glycosylation. In Hyaluronan: Structure, Metabolism, Bi- ological Activity, Therapeutic Applications, Vol. 2. E.A. Balazs & V.C. Hascall, Eds.: 615-618. Matrix Biology Institute. Edgewater, NJ.
- HURTADO, J.C., Y.-J. KIM & B.S. KWON. 1997. Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J. Immunol. 158: 2600-2609.
- BRADFIELD, P.F. et al. 2007. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110: 2545-2555.