Multi-Modal Courtship in the Peacock Spider, Maratus volans (O.P.-Cambridge, 1874) (original) (raw)
Related papers
Behavioral Ecology and Sociobiology, 2019
Multimodal courtship signals may compensate for environmental interference or loss of signals in some sensory modes but may also increase detection by eavesdroppers. Studies on the wolf spider Schizocosa ocreata (Hentz) have demonstrated that males eavesdrop on visual courtship cues of other males and subsequently initiate courtship. Since S. ocreata males use multimodal courtship signals, we examined responses of males to playback of signals in different sensory modes (visual, vibration, multimodal) to test their relative importance for eavesdropping on courting male rivals. We used a recently developed technique to present male wolf spiders with video and/or vibratory stimuli: (1) a multimodal courting male stimulus, with synchronous visual and vibratory cues; (2) a visual-only courting male stimulus (minus the vibratory cues); (3) vibratory cues only (minus the visual cues); and (4) a control (visual background, no courtship). In single-presentation (no-choice) tests, males displayed more courtship bouts and longer durations of courtship bouts to the vibratory stimulus compared with either the visual or multimodal stimuli. However, in two-choice tests where isolated vibratory cues were paired against visual or multimodal stimuli, test males responded with more courtship bouts and longer durations of courtship bouts to the multimodal and visual stimuli. Results of these experiments suggest that male wolf spiders may vary eavesdropping courtship behaviors to compensate for missing sensory information concerning the location and other distinguishing characteristics of the rival male and the whereabouts of the female. Significance statement Social eavesdropping is used to exploit information in signals of conspecifics, e.g., as a means of mate competition. Studies on Schizocosa ocreata wolf spiders have shown that males eavesdrop on visual courtship displays of other males and subsequently initiate multimodal courtship. We used video/vibration playback to examine responses of males to signals in different sensory modes (visual, vibration, both) and determine their relative importance for eavesdropping on courting male rivals. Results suggest that depending on sensory modes of their rivals' signals, males may vary their own courtship displays to compensate for missing information. For example, when signals are presented individually, eavesdropping male response patterns are distinctly different from when presented a choice between modes. Males show more displays with isolated vibratory signals, but given a choice, males more often increase their tapping when multimodal cues were present. Ultimately, eavesdroppers that adjust behaviors in response to available sensory cues would be able to "level the playing field" with rivals and potentially increase the probability of gaining attention of females.
Vibratory courtship in a web-building spider: signalling quality or stimulating the female?
Animal Behaviour, 2003
Courtship behaviour in spiders in the form of premating vibrations by males may function (1) as a male identity signal used for species recognition, (2) in suppression of female aggressiveness, (3) to stimulate female mating behaviour, or (4) as a quality signal used in female choice. We investigated the function of web vibration by male Stegodyphus lineatus in a series of experiments. Regardless of vibratory performance, all males mated successfully with virgin females but only 56.4% of males mated with nonvirgin females. Vibratory performance did not influence male mating success, but heavier males had a higher probability of mating with mated females. Males vibrated less often and produced fewer vibrations when introduced on the web of a mated female. Males that vibrated webs of virgin females mated faster than nonvibrating males, but there was no effect of vibration rate or body mass. There was no effect of male vibratory effort or vibration rate on female reproductive success measured as time to egg laying, clutch size, number of hatched young, number of dispersed young and offspring body mass after a single mating. Males vibrated on abandoned virgin female webs but the response decreased with increasing duration of female absence, suggesting that females produce a web-borne pheromone, which elicits male vibrating behaviour. Mated females were less receptive and not stimulated by male vibrating behaviour. We conclude that male premating vibrations in S. lineatus do not function as a male quality signal selected via female choice. Rather, the primary function of this behaviour may be to stimulate a receptive female to mate.
2013
Abstract Web-building spiders are important models for sexual selection. While our understanding of post-copulatory mechanisms including sperm competition and cryptic female choice is considerable, our knowledge of courtship and how it influences male and female mating decisions is still extremely poor. Here, we provide the first comprehensive description of male courtship behaviour and vibrations generated in the web by the orb-web spider, Argiope keyserlingi–a recognised model species.
Behavioral Ecology and Sociobiology
Condition-dependent secondary sexual traits and signals are often crucial for mate choice decisions. Nuptial gifts, provided by the male to the female during mating, may represent an indicator of male condition, especially if production of the gift is energetically costly. Additionally, other signalling modalities may well play a role in mate choice in such systems. Females of the nursery web spider Pisaura mirabilis preferably mate with males that provide a prey item wrapped in silk. Apart from the nuptial gift, vibrational signals employed during courtship and mating may reveal additional information about male condition. We tested condition-dependence of male vibrational signals of well-fed versus starved males, when in contact with female dragline silk and during mating trials. Our results show that vibrational signals are produced in P. mirabilis, both during pre-copulatory courtship and during copulation. Male courtship signals were condition-dependent: males in good condition...
Eavesdropping and signal matching in visual courtship displays of spiders
Biology Letters, 2012
Eavesdropping on communication is widespread among animals, e.g. bystanders observing malemale contests, female mate choice copying and predator detection of prey cues. Some animals also exhibit signal matching, e.g. overlapping of competitors' acoustic signals in aggressive interactions. Fewer studies have examined male eavesdropping on conspecific courtship, although males could increase mating success by attending to others' behaviour and displaying whenever courtship is detected. In this study, we show that field-experienced male Schizocosa ocreata wolf spiders exhibit eavesdropping and signal matching when exposed to video playback of courting male conspecifics. Male spiders had longer bouts of interaction with a courting male stimulus, and more bouts of courtship signalling during and after the presence of a male on the video screen. Rates of courtship (leg tapping) displayed by individual focal males were correlated with the rates of the video exemplar to which they were exposed. These findings suggest male wolf spiders might gain information by eavesdropping on conspecific courtship and adjust performance to match that of rivals. This represents a novel finding, as these behaviours have previously been seen primarily among vertebrates.
Biological Journal of the Linnean Society, 2012
Jumping spiders in the genus Habronattus use complex multimodal signals during courtship displays. In the present study, we describe multimodal displays from the Habronattus coecatus clade, comprising a diverse group of 23 described species. Habronattus coecatus group displays are made up of sex-specific ornamentation and temporally coordinated combinations of motion displays and vibratory songs. Vibratory songs are complex, consisting of up to 20 elements organized in functional groupings (motifs) that change as courtship progresses. This temporal structuring of displays is analogous to a musical composition. Vibratory elements are associated with movement displays involving coloured and patterned ornaments on the male body. We describe general patterns of multimodal displays for 11 species including one, Habronattus borealis, which appears to have lost complex display behaviour. Habronattus coecatus group courtship is one of the most complex communication systems yet described in arthropods and this group may reveal important factors driving the evolution of complex signals.
Brain, Behavior and Evolution, 2002
Spiders perceive the world using multiple sensory modes, including vibration, vision, and chemical senses, for prey detection and communication. These sensory modes are used in many communication contexts, either individually or in multimodal signaling. Selection for effective signaler-receiver communication and species discrimination is especially strong for these predatory and potentially cannibalistic arthropods, resulting in the evolution of considerable diversity in signaling behaviors. In this paper, we review sensory mechanisms involved in spider signaling and present an overview of recent work done on wolf spiders (Lycosidae) that use multimodal communication (simultaneous visual and vibratory signals) in sexual signals during courtship. The relative importance of visual and vibratory signaling modes, and the use of multiple modes varies among closely related species in the genus Schizocosa, providing a model system for investigating multisensory guidance of complex behavior. Here we examine previous and current research on responses of female spiders to components of male courtship behavior, using several experimental techniques including cue isolation (single sensory modes), video/audio digitization and playback, and cueconflict (mixed conspecific/heterospecific components) to tease apart elements of multimodal signaling.
Male courtship vibrations delay predatory behaviour in female spiders
Scientific reports, 2013
During courtship, individuals transfer information about identity, mating status and quality. However, male web-building spiders face a significant problem: how to begin courting female spiders without being mistaken for prey? Male Argiope spiders generate distinctive courtship vibrations (shudders) when entering a female's web. We tested whether courtship shudders delay female predatory behaviour, even when live prey is present in the web. We presented a live cricket to females during playbacks of shudder vibrations, or white noise, and compared female responses to a control in which we presented a live cricket with no playback vibrations. Females were much slower to respond to crickets during playback of shudder vibrations. Shudder vibrations also delayed female predatory behaviour in a related spider species, showing that these vibrations do not simply function for species identity. These results suggest that male web-building spiders employ a phylogenetically conserved vibra...