Characterizing continuous time random walks on time varying graphs (original) (raw)
Related papers
Steady state and mean recurrence time for random walks on stochastic temporal networks
Physical review. E, Statistical, nonlinear, and soft matter physics, 2015
Random walks are basic diffusion processes on networks and have applications in, for example, searching, navigation, ranking, and community detection. Recent recognition of the importance of temporal aspects on networks spurred studies of random walks on temporal networks. Here we theoretically study two types of event-driven random walks on a stochastic temporal network model that produces arbitrary distributions of interevent times. In the so-called active random walk, the interevent time is reinitialized on all links upon each movement of the walker. In the so-called passive random walk, the interevent time is reinitialized only on the link that has been used the last time, and it is a type of correlated random walk. We find that the steady state is always the uniform density for the passive random walk. In contrast, for the active random walk, it increases or decreases with the node's degree depending on the distribution of interevent times. The mean recurrence time of a nod...
Random walk on temporal networks with lasting edges
Physical Review E
We consider random walks on dynamical networks where edges appear and disappear during finite time intervals. The process is grounded on three independent stochastic processes determining the walker's waiting-time, the up-time and down-time of edges activation. We first propose a comprehensive analytical and numerical treatment on directed acyclic graphs. Once cycles are allowed in the network, non-Markovian trajectories may emerge, remarkably even if the walker and the evolution of the network edges are governed by memoryless Poisson processes. We then introduce a general analytical framework to characterize such non-Markovian walks and validate our findings with numerical simulations.
Random walks on graphs: ideas, techniques and results
Journal of Physics A: Mathematical and General, 2005
Random walks on graphs are widely used in all sciences to describe a great variety of phenomena where dynamical random processes are affected by topology. In recent years, relevant mathematical results have been obtained in this field, and new ideas have been introduced, which can be fruitfully extended to different areas and disciplines. Here we aim at giving a brief but comprehensive perspective of these progresses, with a particular emphasis on physical aspects. Contents 1 Introduction 2 Mathematical description of graphs 3 The random walk problem 4 The generating functions 5 Random walks on finite graphs 6 Infinite graphs 7 Random walks on infinite graphs 8 Recurrence and transience: the type problem 9 The local spectral dimension 10 Averages on infinite graphs 11 The type problem on the average 1 12 The average spectral dimension 21 13 A survey of analytical results on specific networks 23 13.1 Renormalization techniques. .
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2009
The aim of this article is to discuss some of the notions and applications of random walks on finite graphs, especially as they apply to random graphs. In this section we give some basic definitions, in Section 2 we review applications of random walks in computer science, and in Section 3 we focus on walks in random graphs. Given a graph G = (V, E), let d G (v) denote the degree of vertex v for all v ∈ V. The random walk W v = (W v (t), t = 0, 1,. . .) is defined as follows: W v (0) = v and given x = W v (t), W v (t + 1) is a randomly chosen neighbour of x. When one thinks of a random walk, one often thinks of Polya's Classical result for a walk on the d-dimensional lattice Z d , d ≥ 1. In this graph two vertices x = (x 1 , x 2 ,. .. , x d) and y = (y 1 , y 2 ,. .. , y d) are adjacent iff there is an index i such that (i) x j = y j for j = i and (ii) |x i − y i | = 1. Polya [33] showed that if d ≤ 2 then a walk starting at the origin returns to the origin with probability 1 and that if d ≥ 3 then it returns with probability p(d) < 1. See also Doyle and Snell [22]. A random walk on a graph G defines a Markov chain on the vertices V. If G is a finite, connected and non-bipartite graph, then this chain has a stationary distribution π given by π v = d G (v)/(2|E|). Thus if P (t) v (w) = Pr(W v (t) = w), then lim t→∞ P (t) v (w) = π w , independent of the starting vertex v. In this paper we only consider finite graphs, and we will focus on two aspects of a random walk: The Mixing Time and the Cover Time.
A note on recurrent random walks on graphs
Journal of Statistical Physics, 1990
We consider random walks on polynomially growing graphs for which the resistances are also polynomially growing. In this setting we can show the same relation that was found earlier but that needed more complex conditions. The diffusion speed is determined by the geometric and resistance properties of the graph.
Continuous-time random walks on networks with vertex- and time-dependent forcing
Physical Review E, 2013
We have investigated the transport of particles moving as random walks on the vertices of a network, subject to vertex-and time-dependent forcing. We have derived the generalized master equations for this transport using continuous time random walks, characterized by jump and waiting time densities, as the underlying stochastic process. The forcing is incorporated through a vertex-and time-dependent bias in the jump densities governing the random walking particles. As a particular case, we consider particle forcing proportional to the concentration of particles on adjacent vertices, analogous to self-chemotactic attraction in a spatial continuum. Our algebraic and numerical studies of this system reveal an interesting pair-aggregation pattern formation in which the steady state is composed of a high concentration of particles on a small number of isolated pairs of adjacent vertices. The steady states do not exhibit this pair aggregation if the transport is random on the vertices, i.e., without forcing. The manifestation of pair aggregation on a transport network may thus be a signature of self-chemotactic-like forcing.
All-time dynamics of continuous-time random walks on complex networks
The Journal of Chemical Physics, 2013
The concept of continuous-time random walks (CTRW) is a generalization of ordinary random walk models, and it is a powerful tool for investigating a broad spectrum of phenomena in natural, engineering, social and economic sciences. Recently, several theoretical approaches have been developed that allowed to analyze explicitly dynamics of CTRW at all times, which is critically important for understanding mechanisms of underlying phenomena. However, theoretical analysis has been done mostly for systems with a simple geometry. Here we extend the original method based on generalized master equations to analyze all-time dynamics of CTRW models on complex networks. Specific calculations are performed for models on lattices with branches and for models on coupled parallel-chain lattices. Exact expressions for velocities and dispersions are obtained. Generalized fluctuations theorems for CTRW models on complex networks are discussed.
Random Walks Systems on Complete Graphs
Bulletin of the Brazilian …, 2006
We study two versions of random walks systems on complete graphs. In the first one, the random walks have geometrically distributed lifetimes so we define and identify a non-trivial critical parameter related to the proportion of visited vertices before the process dies out. In the second version, the lifetimes depend on the past of the process in a non-Markovian setup. For that version, we present results obtained from computational analysis, simulations and a mean field approximation. These three approaches match.