The Role of Bile After Roux-en-Y Gastric Bypass in Promoting Weight Loss and Improving Glycaemic Control (original) (raw)

Abstract

Gastric bypass leads to the remission of type 2 diabetes independently of weight loss. Our hypothesis is that changes in bile flow due to the altered anatomy may partly explain the metabolic outcomes of the operation. We prospectively studied 12 patients undergoing gastric bypass and six patients undergoing gastric banding over a 6-wk period. Plasma fibroblast growth factor (FGF)19, stimulated by bile acid absorption in the terminal ileum, and plasma bile acids were measured. In canine and rodent models, we investigated changes in the gut hormone response after altered bile flow. FGF19 and total plasma bile acids levels increased after gastric bypass compared with no change after gastric banding. In the canine model, both food and bile, on their own, stimulated satiety gut hormone responses. However, when combined, the response was doubled. In rats, drainage of endogenous bile into the terminal ileum was associated with an enhanced satiety gut hormone response, reduced food intake, and lower body weight. In conclusion, after gastric bypass, bile flow is altered, leading to increased plasma bile acids, FGF19, incretin. and satiety gut hormone concentrations. Elucidating the mechanism of action of gastric bypass surgery may lead to novel treatments for type 2 diabetes. (Endocrinology 153: 3613-3619, 2012)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (40)

  1. Claudel T, Staels B, Kuipers F 2005 The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25:2020 -2030
  2. Garg A, Grundy SM 1994 Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double- blind, crossover trial. Ann Intern Med 121:416 -422
  3. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR 2008 Colesevelam HCl improves glycemic control and reduces LDL cho- lesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 31:1479 -1484
  4. Goldberg RB, Fonseca VA, Truitt KE, Jones MR 2008 Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med 168:1531-1540
  5. Bays HE, Goldberg RB, Truitt KE, Jones MR 2008 Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med 168:1975-1983
  6. Guzelian P, Boyer JL 1974 Glucose reabsorption from bile: evidence for a biliohepatic circulation. J Clin Invest 53:526 -535
  7. Kreymann B, Williams G, Ghatei MA, Bloom SR 1987 Glucagon- like peptide-1 7-36: a physiological incretin in man. Lancet 2:1300 - 1304
  8. Katsuma S, Hirasawa A, Tsujimoto G 2005 Bile acids promote gluca- gon-like peptide-1 secretion through TGR5 in a murine enteroendo- crine cell line STC-1. Biochem Biophys Res Commun 329:386 -390
  9. Pournaras DJ, Osborne A, Hawkins SC, Vincent RP, Mahon D, Ewings P, Ghatei MA, Bloom SR, Welbourn R, le Roux CW 2010 Remission of type 2 diabetes after gastric bypass and banding: mech- anisms and two year outcomes. Ann Surg 252:966 -971
  10. Polyzogopoulou EV, Kalfarentzos F, Vagenakis AG, Alexandrides TK 2003 Restoration of euglycemia and normal acute insulin re- sponse to glucose in obese subjects with type 2 diabetes following bariatric surgery. Diabetes 52:1098 -1103
  11. Pournaras DJ, le Roux CW 2009 Obesity, gut hormones, and bari- atric surgery. World J Surg 33:1983-1988
  12. Ballantyne GH, Longo WE, Savoca PE, Adrian TE, Vukasin AP, Bilchik AJ, Sussman J, Modlin IM 1989 Deoxycholate-stimulated release of peptide YY from the isolated perfused rabbit left colon. Am J Physiol 257:G715-G724
  13. Izukura M, Hashimoto T, Gomez G, Uchida T, Greeley Jr GH, Thompson JC 1991 Intracolonic infusion of bile salt stimulates re- lease of peptide YY and inhibits cholecystokinin-stimulated pancre- atic exocrine secretion in conscious dogs. Pancreas 6:427-432
  14. Adrian TE, Ballantyne GH, Longo WE, Bilchik AJ, Graham S, Bas- son MD, Tierney RP, Modlin IM 1993 Deoxycholate is an impor- tant releaser of peptide YY and enteroglucagon from the human colon. Gut 34:1219 -1224
  15. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, Badman MK, Maratos-Flier E, Mun EC, Pihlajamaki J, Auwerx J, Goldfine AB 2009 Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 17:1671-1677
  16. Jansen PL, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, Schaap FG 2011 Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis 29:48 -51
  17. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K 2008 Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7:678 -693
  18. De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M 2003 Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regula- tion linked to the fasted-to-fed cycle. J Biol Chem 278:39124 -39132
  19. Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A 2004 Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 279:23158 - 23165
  20. Ma K, Saha PK, Chan L, Moore DD 2006 Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116:1102- 1109
  21. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J 2006 Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439: 484 -489
  22. Han SI, Studer E, Gupta S, Fang Y, Qiao L, Li W, Grant S, Hylemon PB, Dent P 2004 Bile acids enhance the activity of the insulin re- ceptor and glycogen synthase in primary rodent hepatocytes. Hepa- tology 39:456 -463
  23. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA 2002 Trans- genic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741-1747
  24. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ 2011 FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621-1624
  25. Mráz M, Lacinová Z, Kaválková P, Haluzíková D, Trachta P, Drá- palová J, Hanušová V, Haluzík M 2011 Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 di- abetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-␣ agonist treatment. Physiol Res 60:627-636
  26. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS 2006 Chemical chaperones re- duce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137-1140
  27. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, Lönroth H, Fändriks L, Ghatei MA, Bloom SR, Olbers T 2007 Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 246:780 -785
  28. Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Oliván B, Teixeira J, McGinty J, Rother KI 2010 Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab 95:4072-4076
  29. Pournaras DJ, Jafferbhoy S, Titcomb DR, Humadi S, Edmond JR, Mahon D, Welbourn R 2010 Three hundred laparoscopic Roux- en-Y gastric bypasses: managing the learning curve in higher risk patients. Obes Surg 20:290 -294
  30. O'Brien PE, Dixon JB, Laurie C, Anderson M 2005 A prospective randomized trial of placement of the laparoscopic adjustable gastric band: comparison of the perigastric and pars flaccida pathways. Obes Surg 15:820 -826
  31. Tagliacozzi D, Mozzi AF, Casetta B, Bertucci P, Bernardini S, Di Ilio C, Urbani A, Federici G 2003 Quantitative analysis of bile acids in human plasma by liquid chromatography-electrospray tandem mass spectrometry: a simple and rapid one-step method. Clin Chem Lab Med 41:1633-1641
  32. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR 2003 Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349:941-948
  33. Jackson RJ, Davis WB, Macdonald I 1977 The energy values of carbohydrates: should bomb calorimeter data be modified? Proc Nutr Soc 36:90A
  34. Näslund E, Grybäck P, Hellström PM, Jacobsson H, Holst JJ, The- odorsson E, Backman L 1997 Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord 21:387-392
  35. Ellrichmann M, Kapelle M, Ritter PR, Holst JJ, Herzig KH, Schmidt WE, Schmitz F, Meier JJ 2008 Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concen- trations. J Clin Endocrinol Metab 93:3995-3998
  36. Bueter M, Löwenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, Sharkey KA, Lutz TA, le Roux CW 2010 Gastric bypass increases energy expenditure in rats. Gastroenterology 138:1845-1853
  37. Stylopoulos N, Hoppin AG, Kaplan LM 2009 Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet- induced obese rats. Obesity 17:1839 -1847
  38. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA 2005 Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeosta- sis. Cell Metab 2:217-225
  39. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA 2003 Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17:1581-1591
  40. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA 2011 FGF15/19 regulates hepatic glu- cose metabolism by inhibiting the CREB-PGC-1␣ pathway. Cell Metab 13:729 -738