Demixed Principal Component Analysis (original) (raw)

Demixed principal component analysis of neural population data

eLife, 2016

Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single...

Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds

Pattern Recognition, 2011

We propose "Supervised Principal Component Analysis (Supervised PCA)", a generalization of PCA that is uniquely effective for regression and classification problems with high-dimensional input data. It works by estimating a sequence of principal components that have maximal dependence on the response variable. The proposed Supervised PCA is solvable in closed-form, and has a dual formulation that significantly reduces the computational complexity of problems in which the number of predictors greatly exceeds the number of observations (such as DNA microarray experiments). Furthermore, we show how the algorithm can be kernelized, which makes it applicable to non-linear dimensionality reduction tasks. Experimental results on various visualization, classification and regression problems show significant improvement over other supervised approaches both in accuracy and computational efficiency.

Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization

IEEE Transactions on Neural Networks, 2000

Visual exploration has proven to be a powerful tool for multivariate data mining and knowledge discovery. Most visualization algorithms aim to find a projection from the data space down to a visually perceivable rendering space. To reveal all of the interesting aspects of multimodal data sets living in a high-dimensional space, a hierarchical visualization algorithm is introduced which allows the complete data set to be visualized at the top level, with clusters and subclusters of data points visualized at deeper levels. The methods involve hierarchical use of standard finite normal mixtures and probabilistic principal component projections, whose parameters are estimated using the expectationmaximization and principal component neural networks under the information theoretic criteria. We demonstrate the principle of the approach on several multimodal numerical data sets, and we then apply the method to the visual explanation in computer-aided diagnosis for breast cancer detection from digital mammograms.

A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals

Stat, 2017

Neuroscientists are increasingly collecting multimodal data during experiments and observational studies. Different data modalities-such as electroencephalogram, functional magnetic resonance imaging, local field potential (LFP) and spike trains-offer different views of the complex systems contributing to neural phenomena. Here, we focus on joint modelling of LFP and spike train data and present a novel Bayesian method for neural decoding to infer behavioural and experimental conditions. This model performs supervised dual-dimensionality reduction: it learns low-dimensional representations of two different sources of information that not only explain variation in the input data itself but also predict extraneuronal outcomes. Despite being one probabilistic unit, the model consists of multiple modules: exponential principal components analysis (PCA) and wavelet PCA are used for dimensionality reduction in the spike train and LFP modules, respectively; these modules simultaneously interface with a Bayesian binary regression module. We demonstrate how this model may be used for prediction, parametric inference and identification of influential predictors. In prediction, the hierarchical model outperforms other models trained on LFP alone, spike train alone and combined LFP and spike train data. We compare two methods for modelling the loading matrix and find them to perform similarly. Finally, model parameters and their posterior distributions yield scientific insights.

Supervised probabilistic principal component analysis

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '06, 2006

Principal component analysis (PCA) has been extensively applied in data mining, pattern recognition and information retrieval for unsupervised dimensionality reduction. When labels of data are available, e.g., in a classification or regression task, PCA is however not able to use this information. The problem is more interesting if only part of the input data are labeled, i.e., in a semi-supervised setting. In this paper we propose a supervised PCA model called SPPCA and a semi-supervised PCA model called S 2 PPCA, both of which are extensions of a probabilistic PCA model. The proposed models are able to incorporate the label information into the projection phase, and can naturally handle multiple outputs (i.e., in multi-task learning problems). We derive an efficient EM learning algorithm for both models, and also provide theoretical justifications of the model behaviors. SPPCA and S 2 PPCA are compared with other supervised projection methods on various learning tasks, and show not only promising performance but also good scalability.

Maximum Gradient Dimensionality Reduction

2018 24th International Conference on Pattern Recognition (ICPR), 2018

We propose a novel dimensionality reduction approach based on the gradient of the regression function. Our approach is conceptually similar to Principal Component Analysis, however instead of seeking a low dimensional representation of the predictors that preserve the sample variance, we project onto a basis that preserves those predictors which induce the greatest change in the response. Our approach has the benefits of being simple and easy to implement and interpret, while still remaining very competitive with sophisticated state-of-the-art approaches.

Expectation-Maximization approaches to independent component analysis

Neurocomputing, 2004

Expectation-Maximization (EM) algorithms for independent component analysis are presented in this paper. For super-Gaussian sources, a variational method is employed to develop an EM algorithm in closed form for learning the mixing matrix and inferring the independent components. For sub-Gaussian sources, a symmetrical form of the Pearson mixture model (Neural Comput. 11 (2) (1999) 417-441) is used as the prior, which also enables the development of an EM algorithm in fclosed form for parameter estimation. r

Principal Component Analysis Networks and Algorithms Xiangyu Kong, Changhua Hu and Zhansheng Duan Springer, 2017, XXII + 323 pages, £112.00, hardcover ISBN: 978-9-811-02913-4

International Statistical Review, 2017

PCA is a statistical method, which is directly related to EVD and SVD. Neural networks-based PCA method estimates PC online from the input data sequences, which especially suits for high-dimensional data due to the avoidance of the computation of large covariance matrix, and for the tracking of nonstationary data, where the covariance matrix changes slowly over time. Neural networks and algorithms for PCA will be described in this chapter, and algorithms given in this chapter are typically unsupervised learning methods. PCA has been widely used in engineering and scientific disciplines, such as pattern recognition, data compression and coding, image processing, high-resolution spectrum analysis, and adaptive beamforming. PCA is based on the spectral analysis of the second moment matrix that statistically characterizes a random vector. PCA is directly related to SVD, and the most common way to perform PCA is via the SVD of a data matrix. However, the capability of SVD is limited for very large data sets. It is well known that preprocessing usually maps a high-dimensional space to a low-dimensional space with the least information loss, which is known as feature extraction. PCA is a well-known feature extraction method, and it allows the removal of the second-order correlation among given random processes. By calculating the eigenvectors of the covariance matrix of the input vector, PCA linearly transforms a high-dimensional input vector into a low-dimensional one whose components are uncorrelated.

Integrative and regularized principal component analysis of multiple sources of data

Statistics in medicine, 2016

Integration of data of disparate types has become increasingly important to enhancing the power for new discoveries by combining complementary strengths of multiple types of data. One application is to uncover tumor subtypes in human cancer research in which multiple types of genomic data are integrated, including gene expression, DNA copy number, and DNA methylation data. In spite of their successes, existing approaches based on joint latent variable models require stringent distributional assumptions and may suffer from unbalanced scales (or units) of different types of data and non-scalability of the corresponding algorithms. In this paper, we propose an alternative based on integrative and regularized principal component analysis, which is distribution-free, computationally efficient, and robust against unbalanced scales. The new method performs dimension reduction simultaneously on multiple types of data, seeking data-adaptive sparsity and scaling. As a result, in addition to f...

Linear Dimensionality Reduction: Survey, Insights, and Generalizations

Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.