The recent breakup of an asteroid in the main-belt region (original) (raw)
Related papers
Disruption of fragmented parent bodies as the origin of asteroid families
Nature, 2003
Asteroid families are groups of small bodies that share certain orbit 1 and spectral properties 2 . More than 20 families have now been identified, each believed to have resulted from the collisional break-up of a large parent body 3 in a regime where gravity controls the outcome of the collision more than the material strength of the rock. The size and velocity distributions of the family members provide important constraints for testing our understanding of the break-up process, but erosion and dynamical diffusion of the orbits over time can erase the original signature of the collision 4,5 . The recently identified young Karin family 6 provides a unique opportunity to study a collisional outcome almost unaffected by orbit evolution. Here we report numerical simulations modelling classes of collisions that reproduce the main characteristics of the Karin family. The sensitivity of the outcome of the collision to the internal structure of the parent body allows us to show that the family must have originated from the break-up of a pre-fragmented parent body, and that all large family members formed by the gravitational reaccumulation of smaller bodies. We argue that most of the identified asteroid families are likely to have had a similar history.
Collisional and Rotational Disruption of Asteroids
Advanced Science Letters, 2011
Asteroids are leftover pieces from the era of planet formation that help us understand conditions in the early Solar System. Unlike larger planetary bodies that were subject to global thermal modification during and subsequent to their formation, these small bodies have kept at least some unmodified primordial material from the solar nebula. However, the structural properties of asteroids have been modified considerably since their formation. Thus, we can find among them a great variety of physical configurations and dynamical histories. In fact, with only a few possible exceptions, all asteroids have been modified or completely disrupted many times during the age of the Solar System. This picture is supported by data from space mission encounters with asteroids that show much diversity of shape, bulk density, surface morphology, and other features. Moreover, the gravitational attraction of these bodies is so small that some physical processes occur in a manner far removed from our common experience on Earth. Thus, each visit to a small body has generated as many questions as it has answered. In this review we discuss the current state of research into asteroid disruption processes, focusing on collisional and rotational mechanisms. We find that recent advances in modeling catastrophic disruption by collisions have provided important insights into asteroid internal structures and a deeper understanding of asteroid families. Rotational disruption, by tidal encounters or thermal effects, is responsible for altering many smaller asteroids, and is at the origin of many binary asteroids and oddly shaped bodies.
On the oldest asteroid families in the main belt
Asteroid families are groups of minor bodies produced by high-velocity collisions. After the initial dispersions of the parent bodies fragments, their orbits evolve because of several gravitational and non-gravitational effects, such as diffusion in mean-motion resonances, Yarkovsky and Yarkovsky–O'Keefe–Radzievskii–Paddack (YORP) effects, close encounters of collisions, etc. The subsequent dynamical evolution of asteroid family members may cause some of the original fragments to travel beyond the conventional limits of the asteroid family. Eventually, the whole family will dynamically disperse and no longer be recognizable. A natural question that may arise concerns the timescales for dispersion of large families. In particular, what is the oldest still recognizable family in the main belt? Are there any families that may date from the late stages of the late heavy bombardment and that could provide clues on our understanding of the primitive Solar system? In this work, we investigate the dynamical stability of seven of the allegedly oldest families in the asteroid main belt. Our results show that none of the seven studied families has a nominally mean estimated age older than 2.7 Gyr, assuming standard values for the parameters describing the strength of the Yarkovsky force. Most 'paleo-families' that formed between 2.7 and 3.8 Gyr would be characterized by a very shallow size–frequency distribution, and could be recognizable only if located in a dynamically less active region (such as that of the Koronis family). V-type asteroids in the central main belt could be compatible with a formation from a paleo-Eunomia family.
Identification and Dynamical Properties of Asteroid Families
Asteroids IV, 2015
Asteroids formed in a dynamically quiescent disk but their orbits became gravitationally stirred enough by Jupiter to lead to high-speed collisions. As a result, many dozen large asteroids have been disrupted by impacts over the age of the Solar System, producing groups of fragments known as asteroid families. Here we explain how the asteroid families are identified, review their current inventory, and discuss how they can be used to get insights into long-term dynamics of main belt asteroids. Electronic tables of the membership for 122 notable families are reported on the Planetary Data System node. See related chapters in this volume for the significance of asteroid families for studies of physics of large scale collisions, collisional history of the main belt, source regions of the near-Earth asteroids, meteorites and dust particles, and space weathering.
Icarus, 1999
The analysis of recent observational data has clarified several general properties of the collisional processes originating the asteroid dynamical families. However, a few puzzling physical problems remain open. According to the observations, the fragments are usually ejected at high velocities; the available theoretical models of catastrophic fragmentation, based on hydrodynamical simulations, do not reproduce this kind of result. Whenever high velocities are obtained in the models, the family is formed by very small-and thus unobservable-fragments.
The fossilized size distribution of the main asteroid belt
Icarus, 2005
Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law Q * D . In contrast to previous efforts, we find our derived Q * D function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a "fossil" from this violent early epoch. We find that most diameter D 120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation events. The observed changes in the asteroid spin rate and lightcurve distributions near D ∼ 100-120 km are likely to be a byproduct of this difference. Estimates based on our results imply the primordial main belt population (in the form of D < 1000 km bodies) was 150-250 times larger than it is today, in agreement with recent dynamical simulations.
Icarus, 1999
An extensive analysis of the size-ejection velocity relationship for members of several of the most important asteroid families identified in the Main Belt is presented. We have found a well defined behavior, with smaller fragments having on the average higher ejection velocities. The results provide useful constraints to current models of catastrophic breakup processes and lead also to a new estimate of the transition limit in largest remnant/parent body mass ratio, distinguishing cratering, and shattering regimes. Moreover, we have now available a practical method for estimating fragment ejection velocities in interasteroid collisional events. This can be easily implemented in numerical models of the collisional evolution of the asteroid belt. In particular, it should be possible to undertake a more quantitative assessment of the efficiency of collisional events in the Main Belt as the sources of near Earth asteroids of different sizes.
New Candidates for Recent Asteroid Breakups
The Astronomical Journal, 2006
Asteroids in our solar system formed in a dynamically quiescent disk, but their orbits became gravitationally stirred enough by Jupiter to lead to high-speed collisions. As a result, several dozen large asteroids have been disrupted by impacts over the past several gigayears and have produced groups of fragments called asteroid families. Here we report three new candidates for asteroid families
Fragments of Late Eocene Earth-impacting asteroids linked to disturbance of asteroid belt
Earth and Planetary Science Letters, 2015
The onset of Earth's present icehouse climate in the Late Eocene coincides with astronomical events of enigmatic causation. At ∼36 Ma ago the 90-100 km large Popigai and Chesapeake Bay impact structures formed within ∼10-20 ka. Enrichments of 3 He in coeval sediments also indicate high fluxes of interplanetary dust to Earth for ∼2 Ma. Additionally, several medium-sized impact structures are known from the Late Eocene. Here we report from sediments in Italy the presence of abundant ordinary chondritic chromite grains (63-250 μm) associated with the ejecta from the Popigai impactor. The grains occur in the ∼40 cm interval immediately above the ejecta layer. Element analyses show that grains in the lower half of this interval have an apparent H-chondritic composition, whereas grains in the upper half are of L-chondritic origin. The grains most likely originate from the regoliths of the Popigai and the Chesapeake Bay impactors, respectively. These asteroids may have approached Earth at comparatively low speeds, and regolith was shed off from their surfaces after they passed the Roche limit. The regolith grains then settled on Earth some 100 to 1000 yrs after the respective impacts. Further neon and oxygen isotopic analyses of the grains can be used to test this hypothesis. If the Popigai and Chesapeake Bay impactors represent two different types of asteroids one can rule out previous explanations of the Late Eocene extraterrestrial signatures invoking an asteroid shower from a single parent-body breakup. Instead a multi-type asteroid shower may have been triggered by changes of planetary orbital elements. This could have happened due to chaos-related transitions in motions of the inner planets or through the interplay of chaos between the outer and inner planets. Asteroids in a region of the asteroid belt where many ordinary chondritic bodies reside, were rapidly perturbed into orbital resonances. This led to an increase in small to medium-sized collisional breakup events over a 2-5 Ma period. This would explain the simultaneous delivery of excess dust and asteroids to the inner solar system. Independent evidence for our scenario are the common cosmic-ray exposure ages in the range of ca. 33-40 Ma for recently fallen H and L chondrites. The temporal coincidence of gravity disturbances in the asteroid belt with the termination of ice-free conditions on Earth after 250 Ma is compelling. We speculate that this coincidence and a general correlation during the past 2 Ga between K-Ar breakup ages of parent bodies of the ordinary chondrites and ice ages on Earth suggest that there may exist an astronomical process that disturbs both regions of the inner asteroid belt and Earth's orbit with a potential impact on Earth's climate.
An asteroid breakup 160 Myr ago as the probable source of the K/T impactor
Nature, 2007
The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past approximately 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the parent body of the asteroid Baptistina, which we infer was a approximately 170-km-diameter body (carbonaceous-chondrite-like) that broke up 160(-20)+30Myr ago in the inner main asteroid belt. Fragments produced by the collision were slowly delivered by dynamical processes to orbits where they could strike the terrestrial planets. We find that this asteroid shower is the most likely source (>90 per cent probability) of the Chicxulub impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago.