Cancer pharmacogenetics: polymorphisms, pathways and beyond (original) (raw)
Abstract
... Baggott, JE, Vaughn, WH & Hudson, BB Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5´-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ...
Figures (4)
Figure 1 | Folate metabolism and related pathways. This simplified figure illustrates the interconnectedness of folate metabolism and proteins for which functional polymorphisms have been identified. Polymorphisms have been found that are associated with pharmacogenetic outcomes in three key proteins in these pathways: the drug transporter protein reduced folate carrier (RFC); the regulatory enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR); and the drug target thymidylate synthase. Key enzymes are denoted as ovals, substrates as rectangles. Red ovals denote enzymes with genetic polymorphisms that have been investigated in pharmacogenetic studies. Orange ovals denote enzymes for which functional genetic polymorphisms have been described. 5-FU, 5-fluorouracil; AICAR, 5-aminoimidazole-4-carboxamine ribonucleotide; AICARFT, AICAR formyltransferase; CBS, cystathionine-B-synthase; DHF, dihydrofolate; DHFR, DHF reductase; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; GAR, glycinamide ribonucleotide; GART, phosphoribosylglycinamide formyltransferase; hFR, human folate receptor; MTX, methotrexate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate; X, various substrates for methylation.
SML, chronic myeloid leukaemia; MTHFR, 5,10-methylenetetrahydrofolate reductase; NCI-CTC, National Cancer Institute Commo Toxicity Criteria; rpt, repeat; TSER, thymidylate-synthase enhancer region; WHO, World Health Organization.
Figure 2 | Possible pathways of irinotecan metabolism. Irinotecan (CPT-11) can be converted into the active metabolite SN-38 by carboxylesterases (CES) outside or inside the cell. CPT-11 and SN-38 are both substrates for the ATP-binding cassette (ABC) transport proteins — P-glycoprotein (ABCB), ABCC and ABCG — which transport the drug out of the cell. Alternatively, CPT-11 and SN-38 can be inactivated by cytochrome P450 enzymes (CYP) or uridine diphosphate glycosyltransferase (UGT), respectively. If SN-38 persists, it binds to its target topoisomerase I (TOP1), interfering with DNA synthesis and repair processes, culminating in cell death. ADPRT, ADP -ribosyltransferase; APC, inactive metabolite of SN-38; CDC45L, cell-division cycle 45L; NPC, inactive metabolite of SN-38; SN-38G, SN-38 glucuronide; TDP, tyrosyl-DNA phosphodiesterase; XRCC1, X-ray-repair cross-complementing defective-1.
Table 2 | Various approaches to analyzing pharmacogenetic variation
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (62)
- Relling, M. V. & Dervieux, T. Pharmacogenetics and cancer therapy. Nature Rev. Cancer 1, 99-108 (2001).
- Ulrich, C. M., Robien, K. & Sparks, R. Pharmacogenetics and folate metabolism: a promising direction. Pharmacogenomics 3, 299-313 (2002).
- Watters, J. W. & McLeod, H. L. Cancer pharmacogenomics: current and future applications. Biochim.Biophys. Acta 2, 99-111 (2003).
- Rogers, J. F., Nafziger, A. N. & Bertino, J. S. Jr. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am. J. Med. 113, 746-750 (2002).
- Sindrup, S. H. & Brosen, K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 5, 335-346 (1995).
- Relling, M. V. et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl Cancer Inst. 91, 2001-2008 (1999). Lowering the dose of mercaptopurine allowed children with the thiopurine S-methyltransferase enzyme deficiency to complete the course of chemotherapy and maintain sufficient erythrocyte thioguanine nucleotide concentrations.
- Evans, W. E. et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J. Clin. Oncol. 19, 2293-2301 (2001).
- McLeod, H. L. & Siva, C. The thiopurine S-methyltransferase gene locus: implications for clinical pharmacogenomics. Pharmacogenomics. 3, 89-98 (2002).
- Milano, G. & McLeod, H. L. Can dihydropyrimidine dehydrogenase impact 5-fluorouracil-based treatment? Eur. J. Cancer 36, 37-42 (2000).
- Mattison, L. K., Soong, R. & Diasio, R. B. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics 3, 485-492 (2002).
- Iyer, L. et al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin. Pharm. Ther. 65, 576-582 (1999). Individuals who were homozygous for the UGT1A1 variant were found to have significantly lower levels of glucuronidation following irinotecan administration. grade III and grade IV diarrhoea and neutropaenia only occurred in patients who were UGT1A1 heterozygous or a homozygous variant.
- Ando, Y. et al. Polymorphisms of UDP-glucuronosyl transferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 60, 6921-6926 (2000).
- Iyer, L. et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2, 43-47 (2002).
- Illmer, T. et al. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res. 62, 4955-4962 (2002).
- Park, D. J. et al. A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res. 61, 8654-8658 (2001).
- Stoehlmacher, J. et al. A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res. 21, 3075-3079 (2001).
- Marsh, S., Kwok, P. & McLeod, H. L. SNP databases and pharmacogenetics: great start, but a long way to go. Hum. Mutat. 20, 174-179 (2002).
- Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 409, 928-933 (2001).
- Wagner, C. Biochemical role of folate in cellular metabolism (ed. Bailey, L.) (Marcel Dekker, New York, 1995).
- Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer 3, 330-338 (2003).
- Chu, E. & Allegra, C. in Cancer Chemotherapy and Biotherapy (eds. Chabner, B. & Longo, D.) 109-148 (Lippincott-Raven Publishers, Philadelphia, 1996).
- Allegra, C. J. et al. Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J.Biol. Chem. 260, 9720-9726 (1985).
- Baggott, J. E., Vaughn, W. H. & Hudson, B. B. Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5'-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem. J. 236, 193-200 (1986).
- Chu, E., Drake, J. C., Boarman, D., Baram, J. & Allegra, C. J. Mechanism of thymidylate synthase inhibition by methotrexate in human neoplastic cell lines and normal human myeloid progenitor cells. J. Biol. Chem. 265, 8470-8478 (1990).
- Grem, J. in Cancer chemotherapy and biotherapy (eds. Chabner, B. & Longo, D.) 149-211 (Lippincott-Raven Publishers, Philadelphia, 1996).
- McGavin, J. K. & Goa, K. L. Capecitabine: a review of its use in the treatment of advanced or metastatic colorectal cancer. Drugs 61, 2309-2326 (2001).
- Blount, B. C. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl Acad.Sci. USA 94, 3290-3295 (1997).
- Duthie, S. J. & McMillan, P. Uracil misincorporation in human DNA detected using single cell gel electrophoresis. Carcinogenesis 18, 1709-1714 (1997).
- Duthie, S. J. & Hawdon, A. DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J. 12, 1491-1497 (1998).
- Lorico, A. et al. Accumulation of DNA strand breaks in cells exposed to methotrexate or N10-propargyl-5,8-dideazafolic acid. Cancer Res. 48, 2036-2041 (1988).
- Chabner, B. A. & Young, R. C. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J. Clin. Invest. 52, 1804-1811 (1973).
- Sirotnak, F. M. & Moccio, D. M. Pharmacokinetic basis for differences in methotrexate sensitivity of normal proliferative tissues in the mouse. Cancer Res. 40, 1230-1234 (1980).
- Kaneda, S. et al. Role in translation of a triple tandemly repeated sequence in the 5'-untranslated region of human thymidylate synthase mRNA. Nucleic Acids Res. 15, 1259-1270 (1987).
- Marsh, S. et al. Novel thymidylate synthase enhancer region alleles in African populations. Hum. Mutat. 16, 528 (2000).
- Horie, N., Aiba, H., Oguro, K., Hojo, H. & Takeishi, K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. 20, 191-197 (1995).
- Pullarkat, S. T. et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. 1, 65-70 (2001).
- Trinh, B. N., Ong, C.-N., Coetzee, G. A., Yu, M. C. & Laird, P. W. Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels. Hum. Genet. 111, 299-302 (2002).
- Skibola, C. F. et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 99, 3786-3791 (2002).
- Ulrich, C. M., Bigler, J., Bostick, R., Fosdick, L. & Potter, J. D. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 62, 3361-3364 (2002).
- Ulrich, C. et al. Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol. Biomarkers Prev. 9, 1381-1385 (2000).
- Lenz, H.-J. et al. A 6 base-pair deletion in the 3′UTR of the thymidylate synthase (TS) gene predicts TS mRNA expression in colorectal tumors. A possible candidate gene for colorectal cancer risk. Proc. Am. Assoc. Cancer Res. 43, 660 (2002).
- Frosst, P. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet. 10, 111-113 (1995).
- Skibola, C. F. et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc. Natl Acad. Sci. USA 96, 12810-12815 (1999).
- Wiemels, J. L. et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc. Natl Acad. Sci. USA 98, 4004-4009 (2001).
- Ma, J. et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57, 1098-1102 (1997).
- Chen, J. et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 56, 4862-4864 (1996).
- R E V I E W S 47. Ulrich, C. M. et al. Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction? Cancer Epidemiol. Biomarkers Prev. 8, 659-668 (1999).
- Slattery, M. L., Potter, J. D., Samowitz, W., Schaffer, D. & Leppert, M. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol. Biomarkers Prev. 8, 513-518 (1999).
- Le Marchand, L. et al. B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control 13, 239-248 (2002).
- Shaw, G. M., Rozen, R., Finnell, R. H., Wasserman, C. R. & Lammer, E. J. Maternal vitamin use, genetic variation of infant methylenetetrahydrofolate reductase, and risk for spina bifida. Am. J. Epidemiol. 148, 30-37 (1998).
- Ou, C. Y. et al. 5,10 Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects. Am. J. Med. Genet. 63, 610-614 (1996).
- Kluijtmans, L. A. et al. Thermolabile methylenetetrahydrofolate reductase in coronary artery disease. Circulation 96, 2573-2577 (1997).
- van der Put, N. M. et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am. J. Hum. Genet. 62, 1044-1051 (1998).
- Weisberg, I., Tran, P., Christensen, B., Sibani, S. & Rozen, R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 64, 169-172 (1998).
- Keku, T. et al. 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and colon cancer in African Americans and whites. Cancer Epidemiol. Biomarkers Prev. 11, 1611-1621 (2002).
- Chango, A. et al. A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol. Genet. Metab. 70, 310-315 (2000).
- Marsh, S., Collie-Duguid, E. S., Li, T., Liu, X. & McLeod, H. L. Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics 58, 310-312 (1999).
- Marsh, S., McKay, J. A., Cassidy, J. & McLeod, H. L. Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int. J. Oncol. 19, 383-386 (2001).
- Iacopetta, B., Grieu, F., Joseph, D. & Elsaleh, H. A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br. J. Cancer 85, 827-830 (2001).
- Ueland, P. M., Hustad, S., Schneede, J., Refsum, H. & Vollset, S. E. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol. Sci. 22, 195-201 (2001).
- Wisotzkey, J. K., Toman, J., Bell, T., Monk, J. S. & Jones, D. MTHFR (C677T) polymorphisms and stage III colon cancer: response to therapy. Mol. Diagn. 4, 95-99 (1999).
- Ulrich, C. M. et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase polymorphism. Blood 98, 231-234 (2001).