Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures (original) (raw)
Related papers
Emotional arousal and activation of the visual cortex: An fMRI analysis
Psychophysiology, 1998
Functional activity in the visual cortex was assessed using functional magnetic resonance imaging technology while participants viewed a series of pleasant, neutral, or unpleasant pictures. Coronal images at four different locations in the occipital cortex were acquired during each of eight 12-s picture presentation periods~on! and 12-s interpicture interval off !. The extent of functional activation was larger in the right than the left hemisphere and larger in the occipital than in the occipitoparietal regions during processing of all picture contents compared with the interpicture intervals. More importantly, functional activity was significantly greater in all sampled brain regions when processing emotional pleasant or unpleasant! pictures than when processing neutral stimuli. In Experiment 2, a hypothesis that these differences were an artifact of differential eye movements was ruled out. Whereas both emotional and neutral pictures produced activity centered on the calcarine fissure~Area 17!, only emotional pictures also produced sizable clusters bilaterally in the occipital gyrus, in the right fusiform gyrus, and in the right inferior and superior parietal lobules.
Distinct brain systems underlie the processing of valence and arousal of affective pictures
Brain and Cognition, 2009
Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural activation in healthy females (N = 23) to affective pictures using a 2 (Valence) Â 2 (Arousal) design. Results show that arousal was preferentially processed by middle temporal gyrus, hippocampus and ventrolateral prefrontal cortex. Regions responding to negative valence included visual and lateral prefrontal regions, positive valence activated middle temporal and orbitofrontal areas. Importantly, distinct arousal-by-valence interactions were present in anterior insula (negative pictures), and in occipital cortex, parahippocampal gyrus and posterior cingulate (positive pictures). These data demonstrate that the brain not only differentiates between valence and arousal but also responds to specific combinations of these two, thereby highlighting the sophisticated nature of emotion processing in (female) human subjects.
Brain Structure and Function, 2017
Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.
Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI
Neuroimage, 2002
Neuroimaging studies with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have begun to describe the functional neuroanatomy of emotion. Taken separately, specific studies vary in task dimensions and in type(s) of emotion studied and are limited by statistical power and sensitivity. By examining findings across studies, we sought to determine if common or segregated patterns of activations exist across various emotional tasks. We reviewed 55 PET and fMRI activation studies (yielding 761 individual peaks) which investigated emotion in healthy subjects. Peak activation coordinates were transformed into a standard space and plotted onto canonical 3-D brain renderings. We divided the brain into 20 nonoverlapping regions, and characterized each region by its responsiveness across individual emotions (positive, negative, happiness, fear, anger, sadness, disgust), to different induction methods (visual, auditory, recall/imagery), and in emotional tasks with and without cognitive demand. Our review yielded the following summary observations: (1) The medial prefrontal cortex had a general role in emotional processing; (2) fear specifically engaged the amygdala; (3) sadness was associated with activity in the subcallosal cingulate; (4) emotional induction by visual stimuli activated the occipital cortex and the amygdala; (5) induction by emotional recall/imagery recruited the anterior cingulate and insula; (6) emotional tasks with cognitive demand also involved the anterior cingulate and insula. This review provides a critical comparison of findings across individual studies and suggests that separate brain regions are involved in different aspects of emotion. © 2002 Elsevier Science (USA)
Levy Gigi 2011 Neuropsychologia
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright
Brain areas and time course of emotional processing
NeuroImage, 2004
The aims of the present study were to identify brain regions involved in emotional processing as well as to follow the time sequence of these processes in the millisecond-range resolution using low resolution brain electromagnetic tomography (LORETA). Different emotional (happy, sad, angry, fearful, and disgust) and neutral faces were presented to 17 healthy, right-handed volunteers on a computer screen while 25channel EEG data were recorded. Subjects were instructed to generate the same emotion as shown in the presented faces. Event-related potentials (ERPs) were computed for each emotion and neutral condition, and analyzed as sequences of potential distribution maps. Paired topographic analysis of variance tests of the ERP maps identified time segments of significant differences between responses to emotional and neutral faces. For these significant segments, statistical analyses of functional LORETA images were performed to identify active brain regions for the different emotions. Significant differences occurred in different time segments within the first 500 ms after stimulus onset. Each emotional condition showed specific activation patterns in different brain regions, changing over time. In the majority of significant time segments, activation was highest in the right frontal areas. Strongest activation was found in the happy, sad, and disgust conditions in extended fronto-temporal areas. Happy, sad, and disgust conditions also produced earlier and more widely distributed differences than anger and fear. Our findings are in good agreement with other brain-imaging studies (PET/fMRI). But unlike other imaging techniques, LORETA allows to follow the time sequence in the millisecond-range resolution.