Large-volume (150 km3) and highly energetic submarine flows that did not erode their soft substrate (original) (raw)

Sediment properties in submarine mass-transport deposits using seismic and rock-physics off NW Barents Sea

Marine Geology, 2018

Submarine mass movements may have profound effects on the morphology and stratigraphic architecture of continental margins. Furthermore, they can represent a threat to human life and infrastructures, and also have implications for hydrocarbon exploration/production. In polar regions, they are one of the predominant sedi-mentary processes on the continental slope. Exploration seismology has been widely employed to study mass-transport deposits (landslides, glacigenic debris flows, mass flows, etc.), which are usually characterized by chaotic reflections. In this study, we analyse a seismic profile acquired in the southern part of the Storfjorden trough mouth fan (NW Barents Sea margin), showing the presence of two submarine mass-transport deposits (MTDs). A giant MTD (PLS-1) is located on the lower continental slope at 2.6-3 km depth, while a more recent MTD (PLS-2) occurs at 1.9-2.4 km depth. Velocity and attenuation seismic tomography, seismic attributes analyses and rock-physics models reveal distinct petrophysical properties for PLS-1 and PLS-2. Despite the known influence of burial depth(s), fluid flow content, and compaction on the internal character of MTDs, the two deposits studied here, in fact, show distinct petrophysical characteristics that reflect lithological variations-more than to any other control. These results suggest different source areas for the two MTDs. The inferred coarser sediment in PLS-1 indicates provenance from areas with abundant glacigenic debris flows, (such as the Bjørnøya Trough-Mouth Fan). Conversely, the finer, relatively fluid-rich sediments of PLS-2 that underwent little translation could have an origin in the area between trough-mouth fans. Here, slow-moving ice resulted in a relatively scarce release of subglacial debris at the shelf edge and the continental slope was subject to enhanced erosion and degradation with a comparatively higher production of relatively fine-grained turbidite flows.

KEY FUTURE DIRECTIONS FOR RESEARCH ON TURBIDITY CURRENTS AND THEIR DEPOSITS

Turbidity currents, and other types of submarine sediment density flow, redistribute more sediment across the surface of the Earth than any other sediment flow process, yet their sediment concentration has never been measured directly in the deep ocean. The deposits of these flows are of societal importance as imperfect records of past earthquakes and tsunamogenic landslides and as the reservoir rocks for many deep-water petroleum accumulations. Key future research directions on these flows and their deposits were identified at an informal workshop in September 2013. This contribution summarizes conclusions from that workshop, and engages the wider community in this debate. International efforts are needed for an initiative to monitor and understand a series of test sites where flows occur frequently, which needs coordination to optimize sharing of equipment and interpretation of data. Direct monitoring observations should be combined with cores and seismic data to link flow and deposit character, whilst experimental and numerical models play a key role in understanding field observations. Such an initiative may be timely and feasible, due to recent technological advances in monitoring sensors, moorings, and autonomous data recovery. This is illustrated here by recently collected data from the Squamish River delta, Monterey Canyon, Congo Canyon, and offshore SE Taiwan. A series of other key topics are then highlighted. Theoretical considerations suggest that supercritical flows may often occur on gradients of greater than , 0.6u. Trains of up-slope-migrating bedforms have recently been mapped in a wide range of marine and freshwater settings. They may result from repeated hydraulic jumps in supercritical flows, and dense (greater than approximately 10% volume) near-bed layers may need to be invoked to explain transport of heavy (25 to 1,000 kg) blocks. Future work needs to understand how sediment is transported in these bedforms, the internal structure and preservation potential of their deposits, and their use in facies prediction. Turbulence damping may be widespread and commonplace in submarine sediment density flows, particularly as flows decelerate, because it can occur at low (, 0.1%) volume concentrations. This could have important implications for flow evolution and deposit geometries. Better quantitative constraints are needed on what controls flow capacity and competence, together with improved constraints on bed erosion and sediment resuspension. Recent advances in understanding dilute or mainly saline flows in submarine channels should be extended to explore how flow behavior changes as sediment concentrations increase. The petroleum industry requires predictive models of longer-term channel system behavior and resulting deposit architecture, and for these purposes it is important to distinguish between geomorphic and stratigraphic surfaces in seismic datasets. Validation of models, including against full-scale field data, requires clever experimental design of physical models and targeted field programs.

On how thin submarine flows transported large volumes of sand for hundreds of kilometers across a flat basin plain without eroding the sea floor

Submarine gravity currents, especially long run-out flows that reach the deep ocean, are exceptionally difficult to monitor in action, hence there is a need to reconstruct how these flows behave from their deposits. This study mapped five individual flow deposits (beds) across the Agadir Basin, offshore north-west Africa. This is the only data set where bed shape, internal distribution of lithofacies, changes in grain size and sea floor gradient, bed volumes, flow thickness and depth of erosion into underlying hemipelagic mud are known for individual beds. Some flows were 30 to 120 m thick. However, flows with the highest fraction of sand were less than 5 to 14 m thick. Sand was most likely to be carried in the lower 5 to 7 m of these flows. Despite being relatively thin, one flow was capable of transporting very large volumes of sediment (ca 200 km3) for large distances across very flat sea floor. These observations show that these relatively thin flows could travel quickly enough on very low gradients (002 to 005) to suspend sand several metres to tens of metres above the sea floor, and maintain those speeds for up to 250 km across the basin. Near uniform hemipelagic mud interval thickness between beds, and coccolith assemblages in the mud caps of beds, suggest that the flows did not erode significantly into the underlying sea floor mud. Simple calculations imply that some flows, especially in the proximal part of the basin, were powerful enough to have eroded hemipelagic mud if it was exposed to the flow. This suggests that the flows were depositional from the moment they arrived at a basin plain location, and that deposition shielded the underlying hemipelagic mud from erosion. Reproducing the field observations outlined in this exceptionally detailed field data set is a challenge for future experimental and numerical models.