Automatic feature-based grouping during multiple object tracking (original) (raw)

Abstract

Contour interpolation automatically binds targets with distractors to impair multiple object tracking . Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (Ͼ15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (68)

  1. Bahrami, B. (2003). Object property encoding and change blindness in multiple object tracking. Visual Cognition, 10, 949 -963. doi:10.1080/ 13506280344000158
  2. Beck, J. (1966). Effect of orientation and of shape similarity on perceptual grouping. Perception & Psychophysics, 1, 300 -302.
  3. Bettencourt, K. C., Michalka, S. W., & Somers, D. C. (2011). Shared filtering processes link attentional and visual short-term memory capac- ity limits. Journal of Vision, 11, 22. doi:10.1167/11.10.22
  4. Bettencourt, K. C., & Somers, D. C. (2009). Effects of target enhancement and distractor suppression on multiple object tracking capacity. Journal of Vision, 9, 9. doi:10.1167/9.7.9
  5. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436. doi:10.1163/156856897X00357
  6. Breitmeyer, B. G., & Tapia, E. (2011). Roles of contour and surface processing in microgenesis of object perception and visual conscious- ness. Advances in Cognitive Psychology, 7, 68 -81. doi:10.2478/ v10053-008-0088-y
  7. Chan, L. K., & Hayward, W. G. (2009). Feature integration theory revis- ited: Dissociating feature detection and attentional guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 35, 119 -132. doi:10.1037/0096-1523.35.1.119
  8. Chen, C. M., Lakatos, P., Shah, A. S., Mehta, A. D., Givre, S. J., Javitt, D. C., & Schroeder, C. E. (2007). Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cerebral Cortex, 17, 1561-1569. doi:10.1093/cercor/bhl067
  9. Cohen, M. A., Pinto, Y., Howe, P. D., & Horowitz, T. S. (2011). The what-where trade-off in multiple-identity tracking. Attention, Percep- tion, & Psychophysics, 73, 1422-1434.
  10. Davis, G., & Driver, J. (1998). Kanizsa subjective figures can act as occluding surfaces at parallel stages of visual search. Journal of Exper- imental Psychology: Human Perception and Performance, 24, 169 -184. doi:10.1037/0096-1523.24.1.169
  11. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501- 517. doi:10.1037/0096-3445.113.4.501
  12. Eagleman, D. M., & Sejnowski, T. J. (2007). Motion signals bias local- ization judgments: A unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. Journal of Vision, 7, 3. doi:10.1167/
  13. Earle, D. C. (1999). Glass patterns: Grouping by contrast similarity. Per- ception, 28, 1373-1382. doi:10.1068/p2986
  14. Feldman, J., & Tremoulet, P. D. (2006). Individuation of visual objects over time. Cognition, 99, 131-165. doi:10.1016/j.cognition.2004.12.008
  15. Flombaum, J. I., Scholl, B. J., & Pylyshyn, Z. W. (2008). Attentional resources in visual tracking through occlusion: The high-beams effect. Cognition, 107, 904 -931. doi:10.1016/j.cognition.2007.12.015
  16. Flombaum, J. I., Scholl, B. J., & Santos, L. R. (2009). Spatiotemporal priority as a fundamental principle of object persistence. In B. Hood & L. Santos (Eds.), The Origins of Object Knowledge (pp. 135-164). Oxford, UK: Oxford University Press.
  17. Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M. (2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21, 920 -925. doi:10.1177/ 0956797610373935
  18. Gilchrist, I. D., Humphreys, G. W., Riddoch, M. J., & Neumann, H. (1997). Luminance and edge information in grouping: A study using visual search. Journal of Experimental Psychology: Human Perception and Performance, 23, 464 -480. doi:10.1037/0096-1523.23.2.464
  19. Gold, J. M., Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2000). Deriving behavioural receptive fields for visually completed contours. Current Biology, 10, 663-666. doi:10.1016/S0960-9822(00)00523-6
  20. Goldstone, R. L., & Son, J. Y. (2005). Similarity. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 13-36). New York, NY: Cambridge University Press.
  21. Gori, S., & Spillmann, L. (2010). Detection vs. grouping thresholds for elements differing in spacing, size and luminance. An alternative ap- proach towards the psychophysics of Gestalten. Vision Research, 50, 1194 -1202. doi:10.1016/j.visres.2010.03.022
  22. Hadad, B. S., & Kimchi, R. (2008). Time course of grouping of shape by perceptual closure: Effects of spatial proximity and collinearity. Percep- tion & Psychophysics, 70, 818 -827. doi:10.3758/PP.70.5.818
  23. Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science: A Journal of the American Psychological Society, 17, 572-576.
  24. He, Z. J., & Nakayama, K. (1992). Surfaces versus features in visual search. Nature, 359, 231-233. doi:10.1038/359231a0
  25. Hollingworth, A., & Franconeri, S. L. (2009). Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface features cues. Cognition, 113, 150 -166. doi:10.1016/j .cognition.2009.08.004
  26. Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., Alvarez, G. A., & Wolfe, J. M. (2007). Tracking unique objects. Perception & Psycho- physics, 69, 172-184. doi:10.3758/BF03193740
  27. Howard, C. J., & Holcombe, A. O. (2008). Tracking the changing features of multiple objects: Progressively poorer perceptual precision and pro- gressively greater perceptual lag. Vision Research, 48, 1164 -1180. doi:10.1016/j.visres.2008.01.023
  28. Howe, P. D., Cohen, M. A., Pinto, Y., & Horowitz, T. S. (2010). Distin- guishing between parallel and serial accounts of multiple object tracking. Journal of Vision, 10, 11. doi:10.1167/10.8.11
  29. Kahneman, D., & Frederick, S. (2002). Representativeness revisited: At- tribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and biases: The psychology of intuitive judgment (pp. 49 -81). Cambridge: Cambridge University Press.
  30. Keane, B. P., Mettler, E., Tsoi, V., & Kellman, P. J. (2011). Attentional signatures of perception: Multiple object tracking reveals the automa- ticity of contour interpolation. Journal of Experimental Psychology: Human Perception and Performance, 37, 685-698. doi:10.1037/ a0020674
  31. Kellman, P. J., & Shipley, T. F. (1991). A theory of visual interpolation in object perception. Cognitive Psychology, 23, 141-221. doi:10.1016/ 0010-0285(91)90009-D
  32. Kellman, P. J., & Spelke, E. S. (1983). Perception of partly occluded objects in infancy. Cognitive Psychology, 15, 483-524. doi:10.1016/ 0010-0285(83)90017-8
  33. Makovski, T., & Jiang, Y. V. (2009a). Feature binding in attentive tracking of distinct objects. Visual Cognition, 17, 180 -194. doi:10.1080/ 13506280802211334
  34. Makovski, T., & Jiang, Y. V. (2009b). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psy- chology: Human Perception and Performance, 35, 1687-1697. doi: 10.1037/a0016453
  35. Mettler, E., Keane, B., & Kellman, P. (2008). Contour interpolation affects multiple object tracking. Journal of Vision, 8, 507. doi:10.1167/8.6.507
  36. Mitroff, S. R., & Alvarez, G. A. (2007). Space and time, not surface features, guide object persistence. Psychonomic Bulletin & Review, 14, 1199 -1204. doi:10.3758/BF03193113
  37. Moore, C. M., Mordkoff, J. T., & Enns, J. T. (2007). The path of least persistence: Object status mediates visual updating. Vision Research, 47, 1624 -1630. doi:10.1016/j.visres.2007.01.030
  38. Moore, C. M., Yantis, S., & Vaughan, B. (1998). Object-based visual selection: Evidence from perceptual completion. Psychological Science, 9, 104 -110. doi:10.1111/1467-9280.00019
  39. Nakayama, K., Shimojo, S., & Silverman, G. H. (1989). Stereoscopic depth: Its relation to image segmentation, grouping, and the recognition of occluded objects. Perception, 18, 55-68. doi:10.1068/p180055
  40. Nieder, A. (2002). Seeing more than meets the eye: Processing of illusory contours in animals. Journal of Comparative Physiology. A, Neuroethol- ogy, Sensory, Neural, and Behavioral Physiology, 188, 249 -260. doi: 10.1007/s00359-002-0306-x
  41. Nothdurft, H. C. (1985). Orientation sensitivity and texture segmentation in patterns with different line orientation. Vision Research, 25, 551-560. doi:10.1016/0042-6989(85)90159-2
  42. Oksama, L., & Hyönä, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach. Visual Cognition, 11, 631-671. doi:10.1080/13506280344000473
  43. Oksama, L., & Hyönä, J. (2008). Dynamic binding of identity and location information: A serial model of multiple identity tracking. Cognitive Psychology, 56, 237-283. doi:10.1016/j.cogpsych.2007.03.001
  44. Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review, 1, 29 -55. doi:10.3758/BF03200760
  45. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. doi: 10.1163/156856897X00366
  46. Pessoa, L., Beck, J., & Mingolla, E. (1996). Perceived texture segregation in chromatic element-arrangement patterns: High intensity interference. Vision Research, 36, 1745-1760. doi:10.1016/0042-6989(95)00248-0
  47. Pinto, Y., Howe, P. D., Cohen, M. A., & Horowitz, T. S. (2010). The more often you see an object, the easier it becomes to track it. Journal of Vision, 10, 4. doi:10.1167/10.10.4
  48. Pylyshyn, Z. W. (2004). Some puzzling findings in multiple object tracking (MOT): I. Tracking without keeping track of object identities. Visual Cognition, 11, 801-822. doi:10.1080/13506280344000518
  49. Pylyshyn, Z. W. (2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14, 175- 198. doi:10.1080/13506280544000200
  50. Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179 -197. doi:10.1163/156856888X00122
  51. Rensink, R. A., & Enns, J. T. (1998). Early completion of occluded objects. Vision Research, 38, 2489 -2505. doi:10.1016/S0042-6989(98)00051-0
  52. Rock, I., Nijhawan, R., Palmer, S., & Tudor, L. (1992). Grouping based on phenomenal similarity of achromatic color. Perception, 21, 779 -789. doi:10.1068/p210779
  53. ERLIKHMAN, KEANE, METTLER, HOROWITZ, AND KELLMAN
  54. Rogers-Ramachandran, D. C., & Ramachandran, V. S. (1998). Psycho- physical evidence for boundary and surface systems in human vision. Vision Research, 38, 71-77. doi:10.1016/S0042-6989(97)00131-4
  55. Scholl, B. J. (2007). Object persistence in philosophy and psychology. Mind & Language, 22, 563-591.
  56. Scholl, B. J. (2009). What have we learned about attention from multiple object tracking (and vice versa)? In D. Dedrick & L. Trick (Eds.), Computation, cognition, and pylyshyn (pp. 49-77). Cambridge, MA: MIT Press.
  57. Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cog- nition, 80, 159-177. doi:10.1016/S0010-0277(00)00157-8
  58. Sekuler, A. B., & Bennett, P. J. (2001). Generalized common fate: Group- ing by common luminance changes. Psychological Science, 12, 437- 444. doi:10.1111/1467-9280.00382
  59. Shipley, T. F., & Kellman, P. J. (1992). Strength of visual interpolation depends on the ratio of physically specified to total edge length. Per- ception & Psychophysics, 52, 97-106. doi:10.3758/BF03206762
  60. Störmer, V. S., Li, S.-C., Heekeren, H. R., & Lindenberger, U. (2011). Feature-based interference from unattended visual field during atten- tional tracking in younger and older adults. Journal of Vision, 11, 1-12. doi:10.1167/11.2.1
  61. Suganuma, M., & Yokosawa, K. (2006). Grouping and trajectory storage in multiple object tracking: Impairments due to common item motions. Perception, 35, 483-495. doi:10.1068/p5487
  62. Valenza, E., & Bulf, H. (2011). Early development of object unity: Evi- dence for perceptual completion in newborns. Developmental Science, 14, 799 -808. doi:10.1111/j.1467-7687.2010.01026.x
  63. Vickery, T. J., & Jiang, Y. V. (2009). Associative grouping: Perceptual grouping of shapes by association. Attention, Perception, & Psychophys- ics, 71, 896 -909. doi:10.3758/APP.71.4.896
  64. Viswanathan, L., & Mingolla, E. (2002). Dynamics of attention in depth: Evidence from multi-element tracking. Perception, 31, 1415-1437. doi: 10.1068/p3432
  65. von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science, 224, 1260 -1262. doi: 10.1126/science.6539501
  66. Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deploy- ment of visual attention and how do they do it? Nature Reviews Neu- roscience, 5, 495-501. doi:10.1038/nrn1411
  67. Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295-340. doi:10.1016/0010- 0285(92)90010-Y
  68. Yin, C., Kellman, P. J., & Shipley, T. F. (2000). Surface integration influences depth discrimination. Vision Research, 40, 1969 -1978. doi: 10.1016/S0042-6989(00)00047-X