Effects of concurrent physical and mental demands for a short duration static task (original) (raw)
Related papers
2011
Workers experience combined physical and mental demands in their daily jobs, yet the contribution of these concurrent demands in the development of work-related musculoskeletal disorders (WMSDs) is not clearly understood. There is a need to understand how concurrent demands interact with different work parameters, such as force levels, muscles employed, and types of exertion, to influence physiological responses. Furthermore, whether muscle capacity is altered with these concurrent demands remains unclear. The current research was conducted to address these needs through three experimental studies that evaluated changes in physiological, performance, and subjective measures. The first study investigated muscle-specific responses to concurrent physical and mental demands during intermittent static work. Mental demands adversely affected physiological responses with increasing physical demand. Furthermore, greater motor and mental performance impairment was observed at either end of the physical demand spectrum. Finally, these interactions were muscle-dependent, with postural (shoulder and torso) muscles indicating a greater propensity to interference due to concurrent demands than executive (wrist) muscles. The aim of the second study was to evaluate differential effects of exertion type (static and dynamic) during concurrent physical and mental work. Concurrent physical and mental demands adversely affected physiological responses during static exertions compared to dynamic exertions. Furthermore, static exertions were more susceptible to decrements in muscle output and mental task performance than dynamic exertions, specifically at higher force levels. The last study quantified the effects of concurrent physical and mental demands on muscle capacity (endurance, fatigue, and recovery) during intermittent static work. Additional mental processing was associated with shorter endurance times, greater strength decline, increased fatigability, and slower cardiovascular recovery. Concurrent demand conditions were also associated with higher levels of perceived fatigue, and rapid increases in rates of perceived exertion, time pressure, mental load, and stress. Overall, the current research provides a comprehensive understanding of the interactive effects of physical and mental demands on physiological responses and task performance. These findings may facilitate the development of task design strategies to help reduce the risk of workplace injuries and to increase worker performance. Finally, outcomes from this research can contribute towards the revision of current ergonomic guidelines to incorporate concurrent assessment of physical and mental demands.
European Journal of Applied Physiology, 2012
Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.
Interfering effects of multitasking on muscle activity in the upper extremity
Journal of Electromyography and Kinesiology, 2007
Multitasking, where workers are required to perform multiple physical tasks with various levels of cognitive load is common in today's workplace. Simultaneous physical and mental demands are thought to cause task interference and likely increase muscle activity. To test the interfering effects of multitasking, 16 healthy participants performed hand and shoulder exertions with combinations of four grip conditions (no grip, 30% grip with low precision, 30% grip with high precision, and maximal grip) and three shoulder conditions at 90°abduction (maintaining posture, 40% force-controlled moment, 40% posture-controlled moment), with and without the Stroop test while surface EMG was recorded from eight upper extremity muscles. Both 40% MVC shoulder moments increased extrinsic forearm muscle activity by 2-4% MVE (p < 0.01). Grip exertion at 30% MVC reduced anterior and middle deltoid activity by 2% MVE (p < 0.01). Exerting a constant force against the transducer (force-controlled) required 3-4% MVE greater middle and posterior deltoid activity (p < 0.001) compared to supporting an equivalent inertial load at the same shoulder angle (posture-controlled). Performing the mental task (Stroop test) concurrently with either 40% MVC shoulder moments significantly increased trapezius activity by nearly 2% MVE (p < 0.05). Interestingly, the Stroop test also reduced all deltoid activity by 1% MVE (p < 0.05). The addition of both the Stroop test and force-control shoulder exertion independently reduced maximal grip force by 7% and 10% MVC, respectively. These results suggest that more complex workplace tasks may act to increase muscle load or interfere with task performance. These small but significant findings may play a role in the development of long-term musculoskeletal disorders in the workplace.
Ergonomics, 2015
Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of shoulder muscle fatigue and discomfort; second, noticeable postural shoulder changes over time; third, if the association between task variation and EMG might be biased by postural changes. Outcome parameters were recorded using multichannel EMG, Optotrak and the Borg scale. Fourteen participants performed a one-hour repetitive Pegboard task in one continuous and two interrupted conditions with rest and a pick-and-place task, respectively. Manifestations of shoulder muscle fatigue and discomfort feelings were observed throughout the conditions but these were not significantly influenced by task variation. After correction for joint angles, the relation between task variation and EMG was significantly biased but significant effects of task variation remained absent.
Occupational Diseases and Environmental Medicine, 2014
We have compared 142 adult men and women of various ages, grouped by professional occupation, all the occupations involving local muscular performance. We studied heart reactions and central nervous system reactions to local muscular performance done until fatigue set in. The results suggested that adaptive body changes had a number of shared signs, namely, tachycardia, hypertension, and increased statistical figures of the heart rhythm, which were indicative of tension in central regulatory mechanisms of the heart.
IISE Transactions on Occupational Ergonomics and Human Factors, 2017
Methods: Thirteen healthy participants performed the task in three workstation designs where the hand was moved either horizontally (H30/30), diagonally (D20/40), or vertically (V10/50), with a mean upper arm elevation of »30. In a fourth design, the hand was moved horizontally at »50 mean arm elevation (H50/50). Results: As intended, upper arm posture variation, measured by the upper arm elevation standard deviation and range of motion, differed between H30/30, D20/40, and V10/50. However, MAWP (10.7 cycles¢min ¡1 on average across conditions; determined using a psychophysical approach), mean upper trapezius activity (54% reference voluntary exertion [RVE]), and heart rate (69 bpm) did not differ between these workstation designs. In H50/50, MAWP was lower (9.3 cycles¢min ¡1), while trapezius activity (78% RVE) and perceived exertion (Borg CR-10) tended to be higher. Conclusions: Our results indicate that posture variation to the extent achieved in the current experiment leads to less effects on muscle activity and perceived exertion than a moderate change in working height.
Muscular and kinematic adaptations to fatiguing repetitive upper extremity work
Applied Ergonomics, 2019
Repetitive work is common in the modern workplace and the effects are often studied using fatigue protocols; however, there is evidence that the manner in which fatigue develops impacts the kinematic and muscular response to reduced physical capacity. The purpose of this study was to simultaneously evaluate muscular and kinematic adaptations during fatiguing, repetitive work until exhaustion. We measured muscle activity in 13 muscles in the shoulder and trunk, and captured full body kinematics while participants completed simulated, repetitive work tasks. Every 12 min, reference data were collected to quantify fatigue. This sequence continued until they reached the termination criteria. Participants displayed significant signs of muscle fatigue, loss of strength and increased perceived fatigue (p < 0.05). Analysis revealed a significant effect of time on posture and muscle activity that was both task and time dependent, and variable both between and within individuals. Participants were able to compensate for reduced physical capacity and maintain task performance through coordinated compensation strategies.
European Journal of Applied Physiology, 2015
exertion (MVE) in baseline to 9.0 % MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Conclusion Trapezius muscle activity increased by about 10 %, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.
International Journal of Environmental Research and Public Health, 2018
Objective: The objective of this study was to investigate if a breathing technique could counteract the effects of hyperventilation due to a sustained attention task on shoulder muscle activity. Background: The trend towards higher levels of automation in industry is increasing. Consequently, manufacturing operators often monitor automated process for long periods of their work shift. Prolonged monitoring work requires sustained attention, which is a cognitive process that humans are typically poor at and find stressful. As sustained attention becomes an increasing requirement of manufacturing operators' job content, the resulting stress experienced could contribute to the onset of many health problems, including work related musculoskeletal disorders (WRMSDs). Methods: The SART attention test was completed by a group of participants before and after a breathing intervention exercise. The effects of the abdominal breathing intervention on breathing rate, upper trapezius muscle activity and end-tidal CO 2 were evaluated. Results: The breathing intervention reduced the moderation effect of end-tidal CO 2 on upper trapezius muscle activity. Conclusions: Abdominal breathing could be a useful technique in reducing the effects of sustained attention work on muscular activity. Application: This research can be applied to highly-automated manufacturing industries, where prolonged monitoring of work is widespread and could, in its role as a stressor, be a potential contributor to WRMSDs.