Deep brain stimulation in Parkinson's disease (original) (raw)
Related papers
Review: Deep brain stimulation in Parkinson's disease
Therapeutic Advances in Neurological Disorders, 2009
During the last 15 years deep brain stimulation (DBS) has been established as a highly-effective therapy for advanced Parkinson's disease (PD). Patient selection, stereotactic implantation, postoperative stimulator programming and patient care requires a multidisciplinary team including movement disorders specialists in neurology and functional neurosurgery. To treat medically refractory levodopa-induced motor complications or resistant tremor the preferred target for high-frequency DBS is the subthalamic nucleus (STN). STN-DBS results in significant reduction of dyskinesias and dopaminergic medication, improvement of all cardinal motor symptoms with sustained long-term benefits, and significant improvement of quality of life when compared with best medical treatment. These benefits have to be weighed against potential surgery-related adverse events, device-related complications, and stimulus-induced side effects. The mean disease duration before initiating DBS in PD is currently about 13 years. It is presently investigated whether the optimal timing for implantation may be at an earlier disease-stage to prevent psychosocial decline and to maintain quality of life for a longer period of time.
Subthalamic and Pallidal Deep Brain Stimulation for Parkinson's Disease
Cureus, 2018
Deep brain stimulation (DBS) is a surgical treatment in which stimulation electrodes are permanently implanted in basal ganglia to treat motor fluctuations and symptoms of Parkinson's disease (PD). Subthalamic nucleus (STN) and globus pallidus internus (GPi) are the commonly used targets for DBS in PD. Many studies have compared motor and non-motor outcomes of DBS in both targets. However, the selection of PD patients for DBS targets is still poorly studied. Therefore, we performed this narrative review to summarize published studies comparing STN DBS and GPi DBS. GPi DBS is better for patients with problems in speech, mood, or cognition while STN DBS is better from an economic point of view as it allows much reduction in antiparkinson medications and less battery consumption.
Deep Brain Stimulation for Early-Stage Parkinson's Disease: An Illustrative Case
Neuromodulation: Technology at the Neural Interface, 2011
Objectives-Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective intervention in advanced Parkinson's Disease (PD), but its efficacy and safety in early PD are unknown. Our team is conducting a randomized pilot trial investigating DBS in early PD. This report describes one participant who received bilateral STN-DBS.
SW2-year outcomes of subthalamic deep brain stimulation for idiopathic Parkinson's disease
Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 2010
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is the recent surgical treatment of choice for patients with idiopathic Parkinson's disease (PD) complicated by motor fluctuation and disabling dyskinesia. To study 2 years clinical outcomes, changes of medication and complications following STN-DBS in patients with advanced PD. Twenty-seven patients with 2-year follow-up and complete data were enrolled for retrospective evaluation of Unified Parkinson's Disease Rating Scale (UPDRS) and levodopa equivalent dose (LED). Postoperative UPDRS at 6-month, 1-year and 2-years were compared with the preoperative corresponding UPDRS. Postoperative LED at 2 years was compared with the preoperative baseline. Statistical analysis was performed with paired t-test. Additionally, 62 patients with STN-DBS were enrolled for evaluation of treatment complications. Of 27 patients with complete 2-years follow-up, preoperative dopamine challenge test showed 50.6% improvement of motor scor...
Journal of the Formosan Medical Association, 2013
KEYWORDS deep brain stimulation; long-term; Parkinson's disease Background/Purpose: Subthalamic nucleus deep brain stimulation (STN-DBS) has been shown to produce long-term symptom improvement in Parkinson's disease. The aim of this study was to identify the target symptoms that show the most improvement at 1 year and at 5 years after STN-DBS. Method: This was a 5-year cohort study of 41 consecutive patients treated with bilateral STN-DBS. Clinical evaluations were performed 1 month prior to surgery and 1 year and 5 years after surgery. The outcome measurements at 1 year and 5 years were the changes compared with the baseline in unified Parkinson's disease rating scale (UPDRS) parts I, II, III, and IV scores, the Hoehn and Yahr stage, and Schwab and England activities of daily living (SEADL) scores in the conditions of off-medication/on-stimulation and off-medication/off-stimulation. Further analysis included changes in the levodopa equivalent daily dose. Results: When compared to the preoperative baseline off-medication condition, significant improvements were observed in the UPDRS parts I, II, III, and IV and SEADL (p < 0.001) scores in the off-medication/on-stimulation condition 1 year after STN-DBS. Five years after STN-DBS, improvements in UPDRS scores were observed only for parts II, III, and IV (p < 0.001). In the
Brain sciences, 2016
We present our experience at the University of Illinois at Chicago (UIC) in deep brain stimulation (DBS) of the subthalamic nucleus (STN), describing our surgical technique, and reporting our clinical results, and morbidities. Twenty patients with advanced Parkinson's disease (PD) who underwent bilateral STN-DBS were studied. Patients were assessed preoperatively and followed up for one year using the Unified Parkinson's Disease Rating Scale (UPDRS) in "on" and "off" medication and "on" and "off" stimulation conditions. At one-year follow-up, we calculated significant improvement in all the motor aspects of PD (UPDRS III) and in activities of daily living (UPDRS II) in the "off" medication state. The "off" medication UPDRS improved by 49.3%, tremors improved by 81.6%, rigidity improved by 50.0%, and bradykinesia improved by 39.3%. The "off" medication UPDRS II scores improved by 73.8%. The Levodopa equival...
Current Practice and the Future of Deep Brain Stimulation Therapy in Parkinson's Disease
Seminars in neurology, 2017
Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease patients experiencing motor fluctuations, medication-resistant tremor, and/or dyskinesia. Currently, the subthalamic nucleus and the globus pallidus internus are the two most widely used targets, with individual advantages and disadvantages influencing patient selection. Potential DBS patients are selected using the few existing guidelines and the available DBS literature, and many centers employ an interdisciplinary team review of the individual's risk-benefit profile. Programmed settings vary based on institution- or physician-specific protocols designed to maximize benefits and limit adverse effects. Expectations should be realistic and clearly defined during the evaluation process, and each bothersome symptom should be addressed in the context of building the risk-benefit profile. Current DBS research is focused on improved symptom control, the development of newer technologies, and the improved...
BMJ open, 2017
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical treatment for Parkinson's disease (PD). However, there is currently no consensus on the best timing for this surgery. The aim of our study is to compare the therapeutic efficacy of bilateral STN DBS in patients with PD with early and late motor complications. 200 patients with PD will be enrolled in this multicentre, prospective, observational study, and will be followed up for 4 years. Patients with PD who meet the criteria for STN DBS surgery will be allocated to either the early stimulation group or the late stimulation group based on the duration of their motor complications. The primary outcome will be changes in quality of life from baseline to 4 years, measured using the 39-item Parkinson's Disease Questionnaire Summary Index. The secondary outcomes include changes in motor function measured using Movement Disorder Society-revised Unified Parkinson's Disease Rating Scale (...
Neurosurgery, 1999
been reported to be effective in alleviating the symptoms of advanced Parkinson's disease (PD). Although recent studies suggest that STN stimulation may be superior to GPi stimulation, a randomized, blinded comparison has not been reported. The present study was designed to provide a preliminary comparison of the safety and efficacy of DBS at either site. METHODS: Ten patients with idiopathic PD, L-dopa-induced dyskinesia, and response fluctuations were randomized to implantation of bilateral GPi or STN stimulators. Neurological condition was assessed preoperatively with patients on and off L-dopa and on DBS at 10 days and 3, 6, and 12 months after implantation. Patients and evaluating clinicians were blinded to stimulation site throughout the study period. Complete follow-up data were analyzed for four GPi patients and five STN patients.
Movement Disorders, 2008
Ongoing adverse events (AEs) at 4-years postsurgery in 69 patients with advanced ParkinsonЈs disease (PD) who received deep brain stimulation (DBS) of the subthalamic nucleus (STN) (n ϭ 49) or the internal globus pallidus (GPi) (n ϭ 20), in the framework of a subset of eight centers of a multicenter study, were analyzed by an independent ad hoc committee. At baseline, the patients' age, sex, disease duration, and clinical condition were virtually identical, as was the duration of follow-up. There were 64 AEs reported in 53% of STN DBS patients and eight AEs reported in 35% of GPi DBS patients. Most of the AEs were not deemed severe and were reported to be present "both with and without stimulation." The majority of the AEs affected patients' cognitive, psychiatric and behavioral status, as well as speech, gait, and balance, and most of these AEs occurred in STN DBS patients. When comparing patients who exhibited AEs with those who did not, it was found that in the STN DBS group, the patients with AEs had a longer disease duration, as well as more gait disorders and psychiatric disturbances at baseline.