Catecholamine Metabolism: An Update on Key Biosynthetic Enzymes and Vesicular Monoamine Transporters (original) (raw)
Related papers
Catecholamine biosynthesis and physiological regulation in neuroendocrine cells
Acta Physiologica Scandinavica, 2000
The catecholamines are widely distributed in mammals and their levels and physiological functions are regulated at many sites. These include their release from neuroendocrine cells, the type and sensitivity of the multiple receptors in target cells, the efficacy of the reuptake system in the secretory cells, and the rates of catecholamine biosynthesis and degradation. In the present review the main focus will be on the more recent studies on the biosynthesis in neuroendocrine cells which involves a specific set of enzymes, with special reference to physiologically important regulatory mechanisms. Eight enzymes of the biosynthetic pathway have now been identified, cloned, expressed as recombinant proteins, characterized with respect to catalytic and regulatory properties, and some of them also crystallized. The identification of the tyrosine hydroxylase catalysed reaction as the rate-limiting step in the normal catecholamine biosynthesis has attracted most attention, both in terms of transcriptional and post-translational regulation. In certain human genetic disorders of catecholamine biosynthesis other enzymes in the pathway may become rate-limiting, notably those involved in the biosynthesis/regeneration of the natural co-factor tetrahydrobiopterin in the tyrosine hydroxylase reaction. The enzymes involved seem to be regulated by a variety of physiological factors, both on a long-term scale and a short-term basis, and include the relative rates of synthesis, degradation and state of activation of the biosynthetic enzymes, notably of tyrosine hydroxylase. Multiple surface receptors and signalling pathways are activated in response to extracellular stimuli and play an essential role in the regulation of catecholamine biosynthesis.
Cloning of two additional catecholamine receptors from rat brain
FEBS Letters, 1990
An approach based on the polymerase chain reaction (PCR) was used to isolate additional members of the G-linked receptor family from a rat striatal lgtI1 cDNA library. Priming with one degenerate probe corresponding to highly conserved consensus sequences in the third transmembrane (TM) domain of 15 G-linked receptors and sequences in the phage vector resulted in one clone (G-13) encoding a dopamine D2 receptor variant with a 29 amino acid insert in the third cytoplasmic loop. In addition, the amino acid sequence encoded by clone G-36 contained conserved sequences characteristic of the G-linked class of receptors and displayed sequence homology in TM domains with the &adrenergic receptor (48%). Two conserved serine residues in TM5 postulated to be part of a ligand binding site in the adrenergic receptor, suggests that G-36 encodes a catecholaminergic receptor. Northern blot analysis contlrmed the expression of G-36 in rat brain, but not in kidney, heart and lung. Several strong hybridizing bands to G-36 were obtained in both human and rat genomic DNA. The general PCR strategy employed here should prove to be extremely useful for the isolation of other members of the G-linked receptor family.
European journal of biochemistry / FEBS, 1992
Three isozymes of human tyrosine hydroxylase (hTH1, hTH2 and hTH4) were expressed in Escherichia coli and purified to homogeneity. Natural catecholamines and related synthetic compounds were found to be potent inhibitors, competitive to the tetrahydrobiopterin cofactor, of all the isozymes. Combining visible spectroscopy and equilibrium-binding studies, it was found that catecholamines bind to hTH1 and hTH2 with a stoichiometry of about 1.0 mol/mol enzyme subunit, interacting with the catalytic iron at the active site. All the isozymes tested were excellent substrates for cAMP-dependent protein kinase (Km = 5 microM, Vmax = 9.5 mumol.min-1.mg kinase-1). The incorporation of about 1.0 mol phosphate/subunit at Ser40 decreased the affinity of dopamine binding by a factor of 10. Conversely, the addition of stoichiometric amounts of Fe(II) and dopamine to the apoenzymes reduced both the affinity and stoichiometry of phosphorylation by cAMP-dependent protein kinase by 2-3-fold. These data...
Proceedings of the National Academy of Sciences of the United States of America, 1980
We sought to determine whether the precursors of catecholamine-containing neurons in the developing peripheral and central nervous systems of chickens and rats express the biosynthetic enzymes tyrosine hydroxylase [THase; tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] or dopamine ,-hydroxylase [DBHase; 3,4-dihydroxyphenylethylamine, ascorbate:oxygen oxidoreductase (hydroxylating), EC 1.14.17.11, prior to the time they withdraw from the cell cycle. Chicken embryos (stages 26-27) were injected with [3Hlthymi
Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999
Catecholamine neurotransmitters are synthesized by hydroxylation of tyrosine to L-dihydroxyphenylalanine (L-Dopa) by tyrosine hydroxylase (TH). The elimination of TH in both pigmented and albino mice described here, like pigmented TH-null mice reported previously (Kobayashi et al., 1995; Zhou et al., 1995), demonstrates the unequivocal requirement for catecholamines during embryonic development. Although the lack of TH is fatal, TH-null embryos can be rescued by administration of catecholamine precursors to pregnant dams. Once born, TH-null pups can survive without further treatment until weaning. Given the relatively rapid half-life of catecholamines, we expected to find none in postnatal TH-null pups. Despite the fact that the TH-null pups lack TH and have not been supplemented with catecholamine precursers, catecholamines are readily detected in our pigmented line of TH-null mice by glyoxylic acid-induced histofluorescence at postnatal day 7 (P7) and P15 and quantitatively at P15...
Journal of Neurochemistry, 2007
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline.