Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase (original) (raw)

Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase

The EMBO journal, 1993

Transcription of plastid genes and transcript accumulation were investigated in white leaves of the albostrians mutant of barley (Hordeum vulgare) and in heat-bleached leaves of rye (Secale cereale) as well as in normal green leaves of both species. Cells of white leaves of the mutant and cells of heat-bleached leaves bear undifferentiated plastids lacking ribosomes and, consequently, plastid translation products, among them the subunits of a putative chloroplast RNA polymerase encoded by the plastid genes rpoA, B, C1 and C2. The following results were obtained. (i) Plastid genes are transcribed despite the lack of chloroplast gene-encoded RNA polymerase subunits. The plastid origin of these transcripts was proven. This finding provides evidence for the existence of a plastid RNA polymerase encoded entirely by nuclear genes. (ii) Transcripts of the rpo genes and of rps15, but not of genes involved in photosynthesis and related processes (psbA, rbcL, atpI-H), were abundantly accumula...

Transcriptional activity of isolated maize chloroplasts

Archives of Biochemistry and Biophysics, 1984

Chloroplasts and etioplasts, isolated from light-or dark-grown Zea mays plants, respectively, can incorporate labeled UTP into RNA in a reaction stimulated by light or ATP. This in organello RNA synthesis proceeded at a linear rate for up to 2 h. When expressed per unit protein, plastids from dark-grown plants incorporated more UTP than those from light-grown plants, and the highest rate of UTP incorporation was found in plastids from light-stimulated leaves (grown previously in the dark). The in organello newly synthesized RNA was heterodispersed, with most transcripts smaller than 14 S. Specific transcripts were detected in organelles from both darkand light-grown plants that contain sequences that are homologous to the mRNAs for the rbcL gene (coding for the large subunit of ribulose bisphosphate carboxylase (LS-RuBPCase)) and for the psbA gene (32-kDa thylakoid membrane protein). Qualitatively, the newly synthesized in wrganello transcripts were similar from the dark _-and light organelles. Q 1984 Academic PRSS. IN.

Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of σ 70 factors of bacterial RNA polymerases in Arabidopsis thaliana

Proceedings of the National Academy of Sciences of the United States of America, 1997

Genes for -like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in 70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green f luorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may inf luence transcription by regulating RNA polymerase activity in a green tissue-specific manner. Plant Materials. A. thaliana ecotype Columbia was grown on vermiculite for 4 weeks at 22°C under 16-hr light͞8-hr dark. A. thaliana was also grown on a Murashige-Skoog (MS) agar medium (19) without sugar at 22°C in continuous light at 3,000

Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of 70 factors of bacterial RNA polymerases in Arabidopsis thaliana

Proceedings of the National Academy of Sciences, 1997

Genes for-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in 70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green f luorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may inf luence transcription by regulating RNA polymerase activity in a green tissue-specific manner. MATERIALS AND METHODS Plant Materials. A. thaliana ecotype Columbia was grown on vermiculite for 4 weeks at 22°C under 16-hr light͞8-hr dark. A. thaliana was also grown on a Murashige-Skoog (MS) agar medium (19) without sugar at 22°C in continuous light at 3,000 The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked ''advertisement'' in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase

Nucleic Acids Research, 2007

Although chloroplast genomes are small, the transcriptional machinery is very complex in plastids of higher plants. Plastidial genes of higher plants are transcribed by plastid-encoded (PEP) and nuclearencoded RNA polymerases (NEP). The nuclear genome of Arabidopsis contains two candidate genes for NEP, RpoTp and RpoTmp, both coding for phage-type RNA polymerases. We have analyzed the use of PEP and NEP promoters in transgenic Arabidopsis lines with altered RpoTp activities and in Arabidopsis RpoTp insertion mutants lacking functional RpoTp. Low or lacking RpoTp activity resulted in an albino phenotype of the seedlings, which normalized later in development. Differences in promoter usage between wild type and plants with altered RpoTp activity were also most obvious early in development. Nearly all NEP promoters were used in plants with low or lacking RpoTp activity, though certain promoters showed reduced or even increased usage. The strong NEP promoter of the essential ycf1 gene, however, was not used in mutant seedlings lacking RpoTp activity. Our data provide evidence for NEP being represented by two phage-type RNA polymerases (RpoTp and RpoTmp) that have overlapping as well as gene-specific functions in the transcription of plastidial genes.

Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize

The EMBO journal, 1993

Sequence analysis of amplified cDNAs derived from the maize chloroplast rpoB transcript which encodes the beta subunit of a chloroplast specific, DNA dependent RNA polymerase reveals four C-to-U editing sites clustered within 150 nucleotides of the 5' terminal region of the rpoB message. These newly identified editing sites confirm the bias of chloroplast editing for certain codon transitions and for second codon positions which both appear suggestive for an involvement of the translational apparatus in the editing process. This supposition prompted us to investigate editing of the rpoB transcript from ribosome deficient, and hence protein synthesis deficient, plastids of the barley mutant albostrians. In this mutant editing is, however, not impaired at any of the editing sites functional in the barley wild type rpoB transcript. This demonstrates that chloroplast editing is neither linked to nor dependent on the chloroplast translational apparatus. As a further consequence any p...

Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants

Frontiers in plant science, 2014

Plastid transcription is crucial for plant growth and development. There exist two types of RNA polymerases in plastids: a nuclear-encoded RNA polymerase (NEP) and plastid-encoded RNA polymerase (PEP). PEP is the major RNA polymerase activity in chloroplast. Its core subunits are encoded by the plastid genome, and these are embedded into a larger complex of nuclear-encoded subunits. Biochemical and genetics analysis identified at least 12 proteins are tightly associated with the core subunit, while about 34 further proteins are associated more loosely generating larger complexes such as the transcriptionally active chromosome (TAC) or a part of the nucleoid. Domain analyses and functional investigations suggested that these nuclear-encoded factors may form several functional modules that mediate regulation of plastid gene expression by light, redox, phosphorylation, and heat stress. Genetic analyses also identified that some nuclear-encoded proteins in the chloroplast that are important for plastid gene expression, although a physical association with the transcriptional machinery is not observed. This covers several PPR proteins including CLB19, PDM1/SEL1, OTP70, and YS1 which are involved in the processing of transcripts for PEP core subunit as well as AtECB2, Prin2, SVR4-Like, and NARA5 that are also important for plastid gene expression, although their functions are unclear.

Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase alpha subunit. Nucleic Acids Res 14: 1029-1044

Nucleic Acids Research

The nucleotide sequence of 2.5 kbp from the cloned SalI fragments 8 and 11 of spinach plastid DNA has been determined. This region was found to encode three open reading frames for hydrophilic polypeptides of 77, 138, and 335 amino acids. Using the computer search algorithm of Lipman and Pearson (Science 227, 1435, 1985), these genes were identified as coding for homologues of E. coli initiation factor IF-1 (inFA), 30S ribosomal protein S11 (rps11), and the alpha-subunit of DNA-dependent RNA polymerase (rpoA). The spinach plastid gene organization is inFA - 381 bp spacer - rps11 - 72 bp spacer - rpoA. The genes are transcribed in vivo and appear to encode functional proteins. These findings imply that plastid chromosomes code for components of the organelle transcription apparatus.

Regulation of rDNA transcription in chloroplasts: promoter exclusion by constitutive repression

Genes & Development, 1994

Spinach chloroplasts contain two types of RNA polymerases. One is multimeric and Escherichia coli-like. The other one is not E. coli-like and might represent a monomeric enzyme of 110 kD. The quantitative relation of the two polymerases changes during plant development. This raises the question, how are plastid genes transcribed that contain E. coli-like and non-E. coli-like promoter elements during developmental phases when both enzymes are present? Transcription of the spinach plastid rrn operon promoter is initiated at three sites: P1, PC, and P2. P1 and P2 are preceded by E. coli-like promoter elements that are recognized by E. coli RNA polymerase in vitro. However, in vivo, transcription starts exclusively at PC. We analyzed different promoter constructions using in vitro transcription and gel mobility-shift studies to understand why P1 and P2 are not used in vivo. Our results suggest that the sequence-specific DNA-binding factor CDF2 functions as a repressor for transcription ...

The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression 1[W][OA

Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5# untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5# UTR and 3# UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5# UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5# UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.

Characterization of Heterologous Multigene Operons in Transgenic Chloroplasts. Transcription, Processing, and Translation1

2000

The first characterization of transcriptional, posttranscriptional, and translational processes of heterologous operons expressed via the tobacco (Nicotiana tabacum) chloroplast genome is reported here. Northern-blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons revealed that polycistronic mRNA was the predominant transcript produced. Despite the lack of processing of such polycistrons, large amounts of foreign protein accumulation was observed in these transgenic lines, indicating abundant translation of polycistrons. This is supported by polysome fractionation assays, which allowed detection of polycistronic RNA in lower fractions of the sucrose gradients. These results show that the chloroplast posttranscriptional machinery can indeed detect and translate multigenic sequences that are not of chloroplast origin. In contrast to native transcripts, processed and unprocessed heterologous polycistrons were stable, even in the absence of 3# untranslated regions (UTRs). Unlike native 5#UTRs, heterologous secondary structures or 5#UTRs showed efficient translational enhancement independent of cellular control. Abundant read-through transcripts were observed in the presence of chloroplast 3#UTRs but they were efficiently processed at introns present within the native operon. Heterologous genes regulated by the psbA (the photosystem II polypeptide D1) promoter, 5# and 3#UTRs have greater abundance of transcripts than the endogenous psbA gene because transgenes were integrated into the inverted repeat region. Addressing questions about polycistrons, and the sequences required for their processing and transcript stability, are essential in chloroplast metabolic engineering. Knowledge of such factors would enable engineering of foreign pathways independent of the chloroplast complex posttranscriptional regulatory machinery. ; fax 407-823-0956.

Localization of the genes for the two chlorophyll a-conjugated polypeptides (Mr 51 and 44 kd) of the photosystem II reaction center on the spinach plastid chromosome. EMBO J 2: 2229-2237

The EMBO Journal

A core particle of the water-oxidizing photosystem II reaction center has been prepared from stacked spinach thylakoid membranes by a procedure involving extraction with the nonionic detergent dodecyl-3-D-maltoside and centrifugation in sucrose gradients. The protein-pigment complex consists of at least four polypeptide species: two components with mol. wts. of 51 and 44 kd which are conjugated with chlorophyll a and ,3-carotene, the herbicide-binding protein of mol. wt. 32 kd and cytochrome b 559 (11 kd). The genes for the 51-and 44-kd polypeptides have been located on the circular 150-kbp spinach plastid chromosome. They were identified by hybrid-selection mapping, in vitro transcription-translation of recombinant DNAs and specific antisera which were used to characterize the translation products. The plastid chromosome carries one uninterrupted copy for each of these genes in its large single-copy region. The gene for the 51-kd protein (which probably bears the P680 reaction center chlorophyll a) is located in close proximity to the gene for cytochrome b6, and some 70 kbp away from the gene for the '32-kd' herbicide-binding protein of the reducing side of photosystem II. The gene for the 44-kd protein is situated halfway between these two genes adjacent to the gene for the P700 chlorophyll a apoprotein of the photosystem I reaction center. Both photosystem II genes are transcribed into discrete RNA species in the same direction but from the opposite strand as the gene for the '32-kd' protein.

Characterization of Heterologous Multigene Operons in Transgenic Chloroplasts. Transcription, Processing, and Translation

PLANT PHYSIOLOGY, 2005

The first characterization of transcriptional, posttranscriptional, and translational processes of heterologous operons expressed via the tobacco (Nicotiana tabacum) chloroplast genome is reported here. Northern-blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons revealed that polycistronic mRNA was the predominant transcript produced. Despite the lack of processing of such polycistrons, large amounts of foreign protein accumulation was observed in these transgenic lines, indicating abundant translation of polycistrons. This is supported by polysome fractionation assays, which allowed detection of polycistronic RNA in lower fractions of the sucrose gradients. These results show that the chloroplast posttranscriptional machinery can indeed detect and translate multigenic sequences that are not of chloroplast origin. In contrast to native transcripts, processed and unprocessed heterologous polycistrons were stable, even in the absence of 3# untranslated regions (UTRs). Unlike native 5#UTRs, heterologous secondary structures or 5#UTRs showed efficient translational enhancement independent of cellular control. Abundant read-through transcripts were observed in the presence of chloroplast 3#UTRs but they were efficiently processed at introns present within the native operon. Heterologous genes regulated by the psbA (the photosystem II polypeptide D1) promoter, 5# and 3#UTRs have greater abundance of transcripts than the endogenous psbA gene because transgenes were integrated into the inverted repeat region. Addressing questions about polycistrons, and the sequences required for their processing and transcript stability, are essential in chloroplast metabolic engineering. Knowledge of such factors would enable engineering of foreign pathways independent of the chloroplast complex posttranscriptional regulatory machinery. ; fax 407-823-0956.

Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development

Plant Molecular Biology, 1993

The turnover of RNAs encoded by seven different barley chloroplast genes was analyzed after treatment of barley shoots with tagetitoxin, a selective inhibitor of chloroplast transcription. Changes in RNA stability were examined during chloroplast development using basal and apical leaf sections of 4.5-dayold dark-grown seedlings and apical leaf sections of 4.0-day-old dark-grown seedlings which had been illuminated for 12 h. Of the RNAs examined, a 2.6 kb unspliced precursor of tRNA(lys) exhibited the shortest half-life, which was estimated to be 3 h. The 16S rRNA and psbA mRNA had the longest estimated half-lives, which were greater than 40 h. Among mRNAs, half-lives were estimated to range from 6 h for psaA mRNA, to over 40 h for psbA mRNA. Therefore, barley chloroplast mRNAs have long half-lives relative to bacterial mRNAs. The stability of atpB mRNA and the unspliced precursor of tRNA-lys was not altered during chloroplast development, while the stability ofpsaA mRNA decreased 2-fold. In contrast, the stability of the 16S rRNA and mRNAs for rpoA, psbA and rbcL increased during chloroplast development. The stability of 16S rRNA increased markedly during chloroplast development in the dark and this increase was maintained in illuminated seedlings. The stability of rbcL mRNA increased 2.5-fold during chloroplast development in the dark, and then decreased 2-fold in chloroplasts of light-grown plants. The initial increase in rpoA and psbA mRNA stability was also light-independent, with total increases in stability of at least 5-fold. In the case of rpoA, the stability of 2 of the 13 polycistronic rpoA transcripts that were detected in dark-grown plants was selectively increased during chloroplast development. In conclusion, the stability of some transcripts is selectively increased and further modulated during chloroplast development in barley. We propose that the selective stabilization of chloroplast mRNAs, which occurred independent of light, is an indication that non-light regulated developmental signals are involved in barley chloroplast mRNA stability.

The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression

PLANT PHYSIOLOGY, 2010

Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5# untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5# UTR and 3# UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5# UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5# UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.

Nucleotide sequence of the clustered genes for the 44 kd chlorophyll a apoprotein and the ?32 kd?-like protein of the photosystem II reaction center in the spinach plastid chromosome

Current Genetics, 1984

A 2,900 base pair DNA segment of the spinach plastid chromosome which encodes the genes for the 44 kd chlorophyll a apoprotein and a "32 kd"-like protein of the photosystem II reaction center has been subjected to sequence and Northern blot analysis. The genes are located almost centrally in the large single-copy segment of the chromosome adjacent to the two genes for the P7oo chlorophyll a apoproteins of the photosystem I reaction center. The DNA sequence reveals two uninterrupted protein-coding regions of 473 (44 kd chlorophyll a apoprotein) and 353 triplets ("32 kd"-like protein). The latter gene is strikingly similar to the gene for the herbicide-binding '32 kd" protein which maps some 30 kbp distant on the plastid chromosome. The two genes overlap by 50 base pairs but are read in different phases. They may be contranscribed and the RNA modified to give several discrete species ranging in size from 1.6 to 4.6 kb. A presumptive promoter site was only identified for the "32 kd"-like protein, while potential ribosome binding and transcription termination sites are found preceding and following both genes, respectively. The polypeptides possess a high content of hydrophobic amino acids, most of which appear to be clustered in transmembrane spans. The molecular weights of 51,785 (44 kd chlorophyll a apoprotein) and 39,465 ("32 kd"like protein) derived from the deduced amino acid sequences are higher than the experimentally determined protein sizes. Amino acid codon usage for both genes is highly selective. Comparison of the chlorophyll a apoproteins of spinach reveals regions of sequence homology.

Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid polypeptide

Journal of Biological Chemistry, 1983

Two major chloroplast proteins are encoded by nuclear genes and synthesized on free cytoplasmic ribosomes: the small subunit of ribulose 1,5-bisphosphate carboxylase and the apoprotein components of the chlorophyll a/b light harvesting complex. We have recently reported the isolation of two cDNA clones from pea which encode both the small subunit of ribulose 1,5-bisphosphate carboxylase (pSS15) and the polypeptide 15 (pAB96), the major chlorophyll a/b binding protein (Broglie, R., Bellemare, G., Bartlett, S., Chua, N.-H., and Cashmore, A. R. (1981) h c. NutL A& Sci U. S. A. 78,7304-7308). To further characterize these clones, we determined their nucleotide sequence. Clone pSS15 contains a 691-base pair cDNA insert which encodes the entire 123 amino acids of the mature small subunit protein. In addition, this clone also encodes 33 amino acids of the NHz-terminal transit peptide extension and 148 nucleotides of the 3' noncoding region preceding the poly(A)tail. A second cDNA clone (pAl396) contains an 833-nucleotide insert which encodes most of polypeptide 15. The DNA sequence of this cloned cDNA was used to deduce the previously undetermined amino acid sequence of this integral thylakoid membrane protein. The nucleotide sequence of the cDNA clone, pSS15, should provide information concerning the role of the transit sequence in the transport of cytoplasmically synthesized chloroplast proteins. Similarly, the deduced amino acid sequence of polypeptide 15 will provide information for predicting its orientation in thylakoid membranes as well as its role in binding chlorophyll.